

Mathematics (Basic)

Answers

2019-2020

Time Allowed : 3 hours

Maximum Marks : 80

Section A

1. Correct Answer: B

intersecting or coincident If a pair of linear equations is consistent, then the lines represented by them are intersecting or coincident.

2. Correct Answer: A

Distance =
$$\sqrt{(3-(3))^2 + (-2-2)^2}$$

= $\sqrt{(3+3)^2 + (-4)^2}$
= $\sqrt{36+16}$
= $\sqrt{52}$

3. Correct Answer: C

$$8 \cot^{2} A - 8 \operatorname{cosec}^{2} A$$
$$= 8 \left(\cot^{2} A - \operatorname{cosec}^{2} A \right)$$
$$= 8 \times -1$$
$$= -8$$

4. Correct Answer: C

The total surface area of a frustum-shaped glass tumbler is $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$ where radii

 $r_1 > r_2$.

5. Correct Answer: D

 $120 = 20 \times 6$ $= 5 \times 4 \times 2 \times 3$ $= 5 \times 2^3 \times 3$

6. Correct Answer: D

The given equation is:

 $4x^2 - 6x + 3 = 0$

Discriminant $= b^2 - 4ac$

Here, b = -6, a = 4, and c = 3

So, Discriminant = $(-6)^2 - 4 \times 4 \times 3$

= 36 - 48 = -12.

7.Correct Answer: C

(3,-6) is the mid-point of the line segment joining (0,0) and (x, y).

So,
$$\frac{(0+x)}{2} = 3$$
 or, $x = 6$

and $\frac{(0+y)}{2} = -6$ or, y = -12

8. Correct Answer: D

In the given figure, number of tangents parallel to tangent PQ is 1.

9. Correct Answer: A

Class	Frequency	Cumulative frequency
0-5	8	8
5-10	10	18
10-15	19	37
15-20	25	62
20 - 25	8	70
Sum:	70	

Sum of frequencies (n) = 70

Middle observation
$$=\left(\left(\frac{n}{2}\right)+1\right)$$
th observation

$$=\left(\frac{70}{2}+1\right)$$
th observation

 $=36^{th}$ observation

 36^{th} observation lies in class interval 10-15. So, median class is 10-15 and its upper limit is 15.

10. Correct Answer: D

The probability of an impossible event is 0.

Fill in the blanks in question numbers 11 to 15.

11. Secant

12. 1

 $a(2)^2 - 2 \times 2 = 0$

- $\Rightarrow 4a-4=0$
- $\Rightarrow a=1$

13. similar

14.8:27 $r_1: r_2 = 2:3$ $\frac{V_1}{V_2} = \frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3} = \frac{r_1^3}{r_2^3}$ $\frac{V_1}{V_2} = \frac{8}{27}$ 15. Collinear 16. $\tan 60^\circ = \frac{20}{AB}$ $\sqrt{3} = \frac{20}{AB}$ $AB = \frac{20}{\sqrt{3}}$ So, the required distance is $\frac{20}{\sqrt{3}}$ m.

17. $\tan 40^{\circ} \times \tan 50^{\circ}$

$$= \tan(90^\circ - 50^\circ) \times \tan 50^\circ$$

$$= \cot 50^\circ \times \tan 50^\circ$$

=1 $(\because \tan \theta \cot \theta = 1)$

OR

 $\cos A = \sin 42^{\circ}$

$$\Rightarrow \cos A = \sin (90^\circ - 48^\circ)$$
$$\Rightarrow \cos A = \cos 48^\circ$$

$$\Rightarrow A = 48^{\circ}$$

18. All possible outcomes are HH, HT, TT, TH.

Probability of an event $=\frac{\text{Number of favourable outcomes}}{\text{Number of all possible outcomes}}$

Probability of getting head both the times $=\frac{1}{4}$

19. Height of the cone =
$$\sqrt{13^2 - 5}$$

$$=\sqrt{169-25}$$

$$=\sqrt{144}$$

Therefore, the height of the cone is $12 \,\mathrm{m}$.

20. –6, *x*, 8 are in A.P.

- $\Rightarrow 2x = -6 + 8$
- $\Rightarrow 2x = 2$
- $\Rightarrow x = 1$

OR

$$-27, -22, -17, -12, \dots$$
$$a_n = a + (n-1)d$$
$$a_{11} = -27 + (11-1) \times 5$$
$$= -27 + 50$$

= 23

Section B

21.
$$3x^2 - 4\sqrt{3x} + 4 = 3x^2 - 2\sqrt{3x} - 2\sqrt{3x} + 4$$

= $\sqrt{3x}(\sqrt{3x} - 2) - 2(\sqrt{3x} - 2)$
= $(\sqrt{3x} - 2)(\sqrt{3x} - 2)$

So, the roots of the equation are the values of x for which

$$\left(\sqrt{3}x-2\right)\left(\sqrt{3}x-2\right)=0$$

Now, $\sqrt{3}x - 2 = 0$ for $x = \frac{2}{\sqrt{3}}$

So, this root is repeated twice, one for each repeated factor $\sqrt{3}x - 2$.

Therefore, the roots of $3x^2 - 4\sqrt{3}x + 4$ are $\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$.

22. If the number 6^n , for any *n*, were to end with the digit zero, then it would be divisible by 5.

That is, the prime factorisation of 6^n would contain the prime 5. This is not possible

$$\therefore 6^n = (2 \times 3)^n$$

So, the prime numbers in the factorisation of 6^n are 2 and 3.

So, the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorisation of 6^n .

So, there is no natural number n for which 6^n ends with the digit zero.

OR

We have,

 $150 = 5^2 \times 3 \times 2$

and, $200 = 5^2 \times 2^3$

Here, 2^3 , 3^1 and 5^2 are the greatest powers of the prime factors 2, 3 and 5 respectively involved in the two numbers.

So,
$$LCM(150, 200) = 2^3 \times 3^1 \times 5^2 = 600$$

23. We have

 $\tan\left(A+B\right) = \sqrt{3}$

or $\tan(A+B) = \tan 60^\circ$

or $A + B = 60^{\circ} \dots (1)$

Again, we have

 $\tan\left(A-B\right) = \frac{1}{\sqrt{3}}$

or $\tan(A-B) = \tan 30^\circ$

or $A - B = 30^{\circ} \dots (2)$

On adding equations (1) and (2), we get

 $2A = 90^{\circ}$

or $A = 45^{\circ}$

On putting this value of A in equation (1), we get

 $B = 15^{\circ}$

24. In $\triangle ABC$ and $\triangle XZY$,

 $\frac{BC}{ZY} = \frac{6}{12}$ $= \frac{1}{2}$ $\frac{AC}{XY} = \frac{2\sqrt{3}}{4\sqrt{3}}$

 $=\frac{1}{2}$ $\frac{AB}{XZ}=\frac{3}{6}$ 1

$$=\frac{1}{2}$$

Ratios of the corresponding sides of the given pair of triangles are equal.

i.e.,
$$\frac{BC}{YZ} = \frac{AC}{XY} = \frac{AB}{XZ} = \frac{1}{2}$$

Therefore, by SSS similarity criterion, $\Delta ABC \sim \Delta XZY$.

The corresponding angles are equal in ΔABC

and ΔXZY . i.e.,

 $\angle A = \angle X = 80^{\circ}$

 $\angle B = \angle Z = 60^{\circ}$

and

 $\angle C = \angle Y$

In $\triangle ABC$,

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $\Rightarrow 80^{\circ} + 60^{\circ} + \angle C = 180^{\circ}$

$$\Rightarrow \angle C = 180^{\circ} - 140^{\circ}$$

$$\Rightarrow \angle C = 40^{\circ}$$

$$\Rightarrow \angle Y = 40^{\circ}$$

25. Number of defective bulbs = 14

Number of good bulbs = 98

Total number of outcomes = 98 + 14 = 112

Probability of getting a good bulbs

 $= \frac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$

 $=\frac{98}{112}$ $=\frac{7}{8}$

26.

Classes	5-15	15-25	25-35	35-45
Frequency	2	4	3	1

Here, we observe that class marks and frequencies are small quantities.

Classes	Frequency $\left(f_{i} ight)$	x_i	$f_i x_i$
5-15	2	10	20
15-25	4	20	80
25-35	3	30	90
35-45	1	40	40
Total	10		230

So, we use direct method	to compute the	e mean and proceed as below.	

Mean,
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$
$$= \frac{230}{10}$$

= 23

Therefore, mean for the following distribution is 23.

Expenditure	200 - 400	400-600	600-800	800-1000	1000-1200
Number of	21	25	19	23	12
employees					

From the given data, we have

$$l = 400, f_1 = 25, f_0 = 21, f_2 = 19, h = 200$$

Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$
= $400 + \left(\frac{25 - 21}{2 \times 25 - 21 - 19}\right) \times 200$

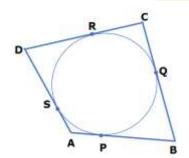
=480

....

 \therefore Mode of the given data is 480.

Section C

27.



In the given figure, quadrilateral ABCD is circumscribing the given circle and its sides are touching the circle at P, Q, R and S.

We have to prove that

AB + CD = AD + BC

We know that lengths of tangents drawn from a point to a circle are equal.

Therefore, from figure, we have

$$DR = DS, CR = CQ, AS = AP, BP = BQ$$

Now,

L.H.S. =
$$AB + CD = (AP + BP) + (CR + DR)$$

= $(AS + BQ) + (CQ + DS)$
= $AS + DS + BQ + CQ$
= $AD + BC$
= R.H.S

28. Let the larger number be y and the smaller number be x.

According to question,

$$y - x = 26$$
 ...(1)

and y = 3x + 4 ...(2)

Substituting the value of y from equation (2) in equation (1), we get

3x + 4 - x = 26

or 2x = 26 - 4

or 2x = 22

or x = 11

Putting this value of x in equation (1), we get

y - 11 = 26

or y = 26 + 11 = 37

Hence, the numbers are 11 and 37.

OR

$$\frac{2}{x} + \frac{3}{y} = 13 \text{ and } \frac{5}{x} - \frac{4}{y} = -2$$

Let $\frac{1}{x} = p$ and $\frac{1}{y} = q$

then given equations can be written as:

2p + 3q = 13

$$2p+3q-13=0$$
 ...(1)

and

$$5p - 4q = -2$$

5p-4q+2=0 ...(2)

Using cross-multiplication method, we get

$$\frac{p}{6-52} = \frac{q}{-65-4} = \frac{1}{-8-15}$$

$$\Rightarrow \frac{p}{-46} = \frac{q}{-69} = \frac{1}{-23}$$

$$\Rightarrow \frac{p}{-46} = \frac{1}{-23} \text{ and } \frac{q}{-69} = \frac{1}{-23}$$

$$\Rightarrow p = \frac{-46}{-23} \text{ and } q = \frac{-69}{-23}$$

$$\Rightarrow p = 2 \text{ and } q = 3$$

$$\Rightarrow \frac{1}{x} = 2 \text{ and } \frac{1}{y} = 3$$

$$\Rightarrow x = \frac{1}{2} \text{ and } y = \frac{1}{3}$$

29. Let us assume that $\sqrt{3}$ is rational.

So we can find integers r and $s \ne 0$ such that $\sqrt{3} = \frac{r}{s}$.

Suppose r and s have a common factor other than 1.

Then we divide *r* and *s* by the common factor and get $\sqrt{3} = \frac{a}{b}$ where *a* and *b* are coprime.

So, $\sqrt{3}b = a$

Squaring on both sides, we get

$$3b^2 = a^2$$

Therefore,

 a^2 is divisible by 3, and so is also divisible by 3.

So, we can write a = 3c for some integer c.

Now,

 $3b^2 = a^2$

 $\Rightarrow 3b^2 = 9c^2$

$$\Rightarrow b^2 = 3c^2$$

This means that b^2 is divisible by 3, and so b is also divisible by 3.

Therefore,

a and b have at least 3 as a common factor.

But this contradicts the fact that a and b are coprime. So, our assumption that $\sqrt{3}$ is a rational is wrong.

Hence, $\sqrt{3}$ is an irrational number.

30. (i) From the given figure, the coordinates of points A, B, C and D can be written as below:

A(2,2), B(5,4), C(7,7) and D(4,5).

(ii) We know that a quadrilateral is a parallelogram if its opposite sides are equal.

Now, using distance formula, we will find the length of each side of the quadrilateral ABCD

$$AB = \sqrt{(5-2)^2 + (4-2)^2} = \sqrt{9+4} = \sqrt{13}$$
$$BC = \sqrt{(7-5)^2 + (7-4)^2} = \sqrt{4+9} = \sqrt{13}$$

$$CD = \sqrt{(4-7)^2 + (5-7)^2} = \sqrt{9+4} = \sqrt{13}$$

$$DA = \sqrt{\left(2-4\right)^2 + \left(2-5\right)^2} = \sqrt{4+9} = \sqrt{13}$$

We see that sides AB, BC, CD and DA are equal in lengths, Therefore, quadrilateral ABCD is a parallelogram.

31. Here, $S_{14} = 1050, a = 10$

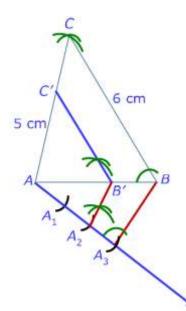
We have to find a_{21} .

We know that sum of first n terms of an AP is given by

$$S_{n} = \frac{n}{2} [2a + n - 1d]$$
So, $S_{14} = \frac{14}{2} 2 \times 10 + 13 \times d$
 $1050 = 7(20 + 13d)$
or $d = 10$
We know that
 $a_{n} = a + (n - 1)d$
So, $a_{21} = 10 + (21 - 1)10$
 $= 10 + 20 \times 10$

$$= 210$$

32.



Step 1: Draw a line segment AB = 4 cm. Taking point A as centre, draw an arc of 5 cm radius. Again, taking point B as centre, draw an arc of 6 cm. These arcs intersect each other at point C. So, we have AC = 5 cm and BC = 6 cm. $\triangle ABC$ is the required triangle.

Step 2: Draw a ray *AX* making an acute angle with line *AB* on the opposite side of vertex *C*.

Step 3: Locate 3 points A_1, A_2, A_3 on AX such that

$$AA_1 = A_1A_2 = A_2A_3$$
.

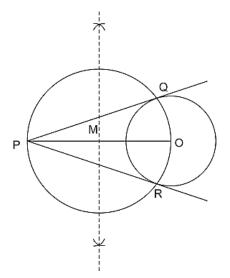
Step 4: Join the points B and A_3 .

Step 5: Through the point A_2 , draw a line parallel to BA_3 intersecting AB at point B'.

Step 6: Draw a line through B' parallel to the line BC to intersect AC at C'.

The required triangle is $\Delta AB'C'$.

OR



Steps of Construction :

Step 1: Draw a circle of radius 2.5 cm with centre at point O.

Locate a point P, at a distance of 8 cm from O, and join O and P.

Step 2: Bisect *OP*. Let *M* be the mid-point of *OP*.

Step 3: Draw a circle with centre at M and MO as radius.

Q and R are points of intersections of this circle with the circle having centre at O.

Step 4: Join *PQ* and *PR*.

PQ and PR are the required tangents.

33. LHS =
$$(\operatorname{cosec} A - \sin A)(\operatorname{sec} A - \cos A)$$

$$= \left(\frac{-}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right)$$
$$= \left(\frac{1 - \sin^2 A}{\sin A}\right) \left(\frac{1 - \cos^2 A}{\cos A}\right)$$
$$= \frac{\cos^2 A}{\sin A} \times \frac{\sin^2 A}{\cos A}$$
$$= \frac{\sin A \cos A}{1}$$

$$= \frac{\sin A \cos A}{\sin^2 A + \cos^2 A}$$
$$= \frac{1}{\frac{\sin^2 A + \cos^2 A}{\sin A \cos A}}$$
$$= \frac{1}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}}$$
$$= \frac{1}{\tan A + \cot A}$$
$$= RHS$$

34. For bigger circle, $OA = 7 \, \text{cm}$

Diameter of the smaller circle $= 7 \, \text{cm}$

Radius of the smaller circle $=\frac{7}{2}$ cm

Area of the smaller circle $=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$

$$=\frac{77}{2}$$
 cm²

Area of shaded region

= Area of the smaller circle $+2\times$ Area of segment *OCB*

$$= \frac{77}{2} \operatorname{cm}^{2} + 2 \times \left(\operatorname{Area of quadrant} - \operatorname{Area} \Delta ABC\right)$$
$$= \frac{77}{2} \operatorname{cm}^{2} + 2 \times \left(\frac{1}{4} \times \frac{22}{7} \times 7^{2} - \frac{1}{2} \times 7 \times 7\right) \operatorname{cm}^{2}$$
$$= \frac{77}{2} \operatorname{cm}^{2} + 49 \left(\frac{11}{7} - 1\right) \operatorname{cm}^{2}$$
$$= \frac{77}{2} \operatorname{cm}^{2} + 49 \left(\frac{4}{7}\right) \operatorname{cm}^{2}$$

$$= \frac{77}{2} \text{ cm}^{2} + 28 \text{ cm}^{2}$$
$$= \frac{77 + 56}{2} \text{ cm}^{2}$$
$$= \frac{133}{2} \text{ cm}^{2}$$
$$= 66.5 \text{ cm}^{2}$$

OR

ABCD is a square with side $7 \, \mathrm{cm}$. Then,

Length of the diagonal of square $= 7\sqrt{2}$ cm

Diameter of circle = Diagonal of square

$$\Rightarrow BD = 7\sqrt{2} \text{ cm}$$

Radius of circle $=\frac{BD}{2}$

$$=\frac{7\sqrt{2}}{2}$$
 cm

Area of shaded region = Area of circle - Area of the square

$$=\frac{22}{7}\times\frac{7\sqrt{2}}{2}\times\frac{7\sqrt{2}}{2}-7\times7$$

$$=77 - 49$$

$$= 28 \,\mathrm{cm}^2$$

Therefore, the area of the saded region is 28 cm^2 .

Section D

35. The given polynomial is $p(x) = 3x^4 - 4x^3 - 10x^2 + 8x + 8$

The two zeroes of p(x) are $\sqrt{2}$ and $-\sqrt{2}$.

Therefore, $(x - \sqrt{2})$ and $(x + \sqrt{2})$ are factors of p(x).

Also,
$$(x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2$$

and so
$$x^2 - 2$$
 is a factor of $p(x)$.

Now,

Equating $(x^2-2)(3x+2)(x-2)$ to zero, we get the zeroes of the given polynomial. Hence, the zeroes of the given polynomial are:

$$\sqrt{2}, -\sqrt{2}, -\frac{2}{3}$$
 and 2.

The given polynomial is $g(x) = x^3 - 3x^2 + x + 2$

Here, divisor is $x^2 - 2x + 1$.

Divide $g(x) = x^3 - 3x^2 + x + 2byx^2 - 2x + 1$ and find the remainder.

$$x^{2} - 2x + 1) x^{3} - 3x^{2} + x + 2$$

$$x^{3} - 2x^{2} + x$$

$$- + -$$

$$-x^{2} + 2$$

$$-x^{2} + 2x - 1$$

$$+ - +$$

$$-2x + 3$$

So, Quotient = x-1 and Remainder = -2x+3.

The division algorithm states that

Dividend = Divisor × Quotient + Remainder

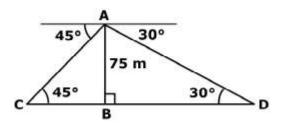
RHS = Divisor × Quotient + Remainder

$$= (x^{2} - 2x + 1)(x - 1) - 2x + 3$$
$$= x^{3} - 2x^{2} + x - x^{2} + 2x - 1 - 2x + 3$$
$$= x^{3} - 3x^{2} + x + 2$$
$$= 1 \text{HS}$$

Thus, the division alogorithm is verified.

36. Let AB be a lighthouse and ships be at points C and D.

It is given that AB = 75 m. We have to find the distance CD.



In $\triangle ABC$, we have

 $\tan 45^\circ = \frac{AB}{BC}$

or $1 = \frac{AB}{BC}$

or
$$BC = AB = 75$$
 ...(1)

Now,

In $\triangle ABD$, we have

 $\tan 30^\circ = \frac{AB}{BD}$

or
$$\frac{1}{\sqrt{3}} = \frac{75}{BD}$$

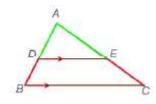
```
or BD = 75\sqrt{3} ...(2)
```

From (1) and (2), we get

$$CD = BC + BD = 75 + 75\sqrt{3} = 75(1+\sqrt{3})$$

Therefore, the distance between the two ships is $75(1+\sqrt{3})$ m.

37.



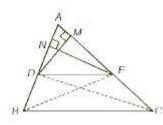
Given In $\Delta ABC = DE \| BC$.

To Prove: $\frac{AD}{DB} = \frac{AE}{EC}$.

Construction:

i. Join BE and CD.

ii Draw $DM \perp AC$ and $EN \perp AB$.



Proof:

area
$$(\Delta ADE) = \frac{1}{2} \times \text{base} \times \text{height}$$

$$=\frac{1}{2} \times AD \times EN$$

and

area
$$(\Delta BDE) = \frac{1}{2} \times BD \times EN$$

Therefore,

$$\frac{\operatorname{area} \Delta ADE}{\operatorname{area} \Delta BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times BD \times EN} = \frac{AD}{BD} \quad \dots (1)$$

Similarly,

$$\frac{\operatorname{area} \Delta ADE}{\operatorname{area} \Delta DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC} \quad \dots (2)$$

But area (ΔBDE) = area (ΔDEC) ...(3)

Triangles on the same base and between the same parallels are equal in area.

Therefore, from (1), (2) and (3), we get

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Hence, proved.

ABC is an equilateral triangle.

Therefore,
$$AB = BC = AC$$

Now,

$$BD = DC = \frac{BC}{2} = \frac{AB}{2}$$
 (*D* is the midpoint of *BC* and *AB* = *BC*)

OR

Using Pythagoras theorem in $\triangle ADC$, we get

$$AC^{2} = AD^{2} + DC^{2}$$

$$AB^{2} = AD^{2} + \left(\frac{AB}{2}\right)^{2} \quad \left(AC = AB \text{ and } DC = \frac{AB}{2}\right)$$

$$AB^{2} = AD^{2} + \frac{AB^{2}}{4}$$

$$AB^{2} - \frac{AB^{2}}{4} = AD^{2}$$

$$\frac{3AB^{2}}{4} = AD^{2}$$

$$3AB^{2} = 4AD^{2} \quad \dots (1)$$

Similarly, using Pythagoras theorem in ΔAEB , we get

$$3AB^2 = 4BE^2 \quad \dots (2)$$

Again, using Pythagoras theorem in ΔAFC , we get

$$3AB^2 = 4CF^2 \quad \dots (3)$$

On adding equations (1), (2) and (3), we get

$$3AB^{2} + 3AB^{2} + 3AB^{2} = 4AD^{2} + 4BE^{2} + 4CF^{2}$$

or,
$$9AB^2 = 4AD^2 + BE^2 + CF^2$$

or,
$$4AD^2 + BE^2 + CF^2 = 9AB^2$$

Hence, proved

38. Height of the frustum = h = 14 cm

Radius of upper end of the frustum $= r_1 = 20$ cm

Radius of lower end of the frustum $= r_2 = 8 \text{ cm}$

Capacity of container = Volume of the frustum

$$= \frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$$

= $\frac{14}{3} \times \frac{22}{7} (20^2 + 8^2 + 20 \times 8)$
= $\frac{44}{3} (400 + 64 + 160)$
= $\frac{44}{3} \times 624$
= 9152 cm³

39. Let A and B be the time taken by the smaller and the larger taps respectively to fill the tank.

Since both the taps together can fill the tank in $9\frac{3}{8}$ hours $=\frac{75}{8}$ hours.

So,
$$\frac{1}{A} + \frac{1}{B} = \frac{1}{\frac{75}{8}}$$

Or, $\frac{1}{A} + \frac{1}{B} = \frac{8}{75}$...1

Tap with larger diameter takes 10 hours less than smaller one to fill the tank.

Or,
$$\frac{1}{B} = \frac{1}{A - 10}$$
 ...(2)

So, A - 10 = B

By placing the value of $\frac{1}{B}$ from 2 in to 1, we get

 $\frac{1}{A} + \frac{1}{A - 10} = \frac{8}{75} \quad \dots 1$ or, $\frac{A - 10 + A}{A^2 - 10A} = \frac{8}{75}$ or, $\frac{A - 5}{A^2 - 10A} = \frac{4}{75}$ or, $75A - 375 = 4A^2 - 40A$ or, $4A^2 - 40A - 75A + 375 = 0$ or, $4A^2 - 115A + 375 = 0$ or, $4A^2 - 100A - 15A + 375 = 0$ or, 4A(A - 25) - 15(A - 25) = 0or, (A - 25)(A - 15) = 0A = 25 Hours $(A \neq \frac{15}{4} \text{ hours, because } B \text{ becomes negative}).$

So, B = 25 - 10 = 15 hours

OR

Let L be the length of the rectangle.

So, breadth of the rectangle = L - 3

Area of the rectangle $= LL - 3 \dots 1$

Base of the isosceles triangle = L - 3

Altitude of the isosceles triangle $= 12 \, m$

Area of the isosceles triangle $=\frac{1}{2}(12)(-3)$...(2)

Given that

 $L(-3) = \frac{1}{2}(2)(-3) - 4$ Or, $L^2 - 3L = 6L - 18 + 4$ Or, $L^2 - 9L + 14 = 0$ Or, $L^2 - 7L - 2L + 14 = 0$ Or, L(-7) - 2(-7) = 0Or, (-7)(-2) = 0So, L = 7 m ($\neq 2 :: L - 3$ is negative).

Breadth=7m-3m=4m

Length and breadth of the rectangle are $7 \, m$ and $4 \, m$ respectively.

40.

Marks	Cumulative frequency
Less than 10	7
Less than 20	7 + 14 = 21
Less than 30	21+13 = 34
Less than 40	34 + 12 = 46
Less than 50	46 + 20 = 66
Less than 60	66+11=77
Less than 70	77 + 15 = 92
Less than 80	92+8=100

Marks	Frequency $ig(fig)$	Cumulative frequency $(c\!f)$
0-10	7	7
10 - 20	14	21
20 - 30	13	34
30 - 40	12	46
40 - 50	20	66
50 - 60	11	77
60 - 70	15	92
70 - 80	8	100

Now, plot $(10,7), (20,21), \dots, (80,100)$ on the graph.

