

# CBSE 12th - 2022-23

# **Applied Mathematics**

# **Answers**

# **Section A**

### 1. Correct Answer: C

$$x \equiv 27 \pmod{4}$$

$$\Rightarrow x - 27 = 4k$$
, for some integer  $k$ 

$$\Rightarrow x = 31 \text{ as } 27 < x \le 36$$

### 2. Correct Answer: D

### 3. Correct Answer: B

$$n = 26 \Rightarrow |t| = 3.07 > t_{25}(0.05) = 2.06$$

#### 4. Correct Answer: B

$$n = 34 \Rightarrow v = 34 - 1 = 33$$

#### 5. Correct Answer: B

Speed of boat downstream = u = 10 km/h

And, speed of boat upstream = v = 6 km/h

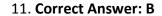
$$\Rightarrow$$
 Speed of stream  $=\frac{1}{2}(u-v)=2 \text{ km/h}$ 

#### 6. Correct Answer: C



# 7. Correct Answer: C

Truck *A* carries water = 
$$100 - \left(\frac{20 \times 1,500}{1,000}\right) = 70l$$


Truck *B* carries water = 
$$80 - \left(\frac{20 \times 1,000}{1,000}\right) = 60 l$$

## 8. Correct Answer: D

Let the face value of the bond = x

Then, 
$$\frac{10}{200}x = 1,800 \Rightarrow x = 36,000$$

## 9. Correct Answer: C



$$D = \frac{C - S}{n} = \frac{4,80,000 - 25,000}{10} = 45,500$$

#### 12. Correct Answer: A

#### 13. Correct Answer: B

$$\int \frac{dy}{y \log y} = \int \frac{dx}{x}$$

$$\Rightarrow \log(\log y) = \log|x| + \log|C|$$

$$\Rightarrow \log(\log y) = \log|Cx|$$

$$\Rightarrow y = e^{|Cx|}$$



14. Correct Answer: C

$$\left[ \left( \frac{60,000}{10,000} \right)^{\frac{1}{4}} - 1 \right] \times 100 = \left[ \sqrt[4]{6} - 1 \right] \times 100$$

15. Correct Answer: C

$$\Rightarrow$$
180:300 = 3:5

- 16. Correct Answer: D
- 17. Correct Answer: C

#### 18. Correct Answer: B

For questions 19 and 20, two statements are given – one labelled Assertion(A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (i), (ii), (iii) and (iv) as given below:

19. Correct Answer: A

$$P$$
 (Win in one game) =  $P$  (Lose in one game) =  $\frac{1}{2}$ 

$$\Rightarrow$$
  $P$  (Beena to win in 3 out of 4 games) =  $^4C_3\left(\frac{1}{2}\right)^3\cdot\left(\frac{1}{2}\right)=\frac{1}{4}=25\%$ 

Assertion is correct and Reason is the correct explanation for it

20. Correct Answer: B

Effective rate of interest = Nominal rate – inflation rate = 12.5 - 2 = 10.5%

Assertion is correct

Reason is true but not supportive of assertion



## **Section B**

21. 
$$P = 2,50,000, R = 7,500, i = \frac{r}{400}$$

$$\Rightarrow$$
 2,50,000 =  $\frac{7,500 \times 400}{r}$   $\Rightarrow$   $r = 12$ 

22. 
$$a-8=1 \Rightarrow a=9$$

$$3b = -2 \Longrightarrow b = -\frac{2}{3}$$

$$-c+2=-28 \Rightarrow c=30$$

$$\Rightarrow 2a+3b-c=-14$$

OR

22. Expanding 
$$C_1$$
, we get  $\Delta = 1(2x^2 + 4) - 2(-4x - 20) = 86$ 

$$\Rightarrow x^2 + 4x - 21 = 0$$

$$x = 3, -7$$

23. Let the number of hardcopy and paperback copies be x and y respectively

$$\Rightarrow$$
 Maximum profit  $Z = (72x + 40y) - (9600 + 56x + 28y) = 16x + 12y - 9600$ 

Subject to constraints:

$$x + y \le 960$$

$$5x + y \le 2400$$

$$x, y \ge 0$$

24. Speed of boat in still waters = x km/h

Speed of stream =  $y \, \text{km/h}$ 

Distance travelled = d km



Time taken to travel downstream =  $\frac{d}{x+y}$ 

Time taken to travel upstream =  $\frac{d}{x-y}$ 

Then, 
$$\frac{2d}{x+y} = \frac{d}{x-y} \Rightarrow x: y = 3:1$$

OR

24. Param runs  $5 \, \mathrm{m}$  in  $3 \, \mathrm{seconds}$ 

 $\Rightarrow$  time taken to run  $200 \, \text{m} = \frac{3}{5} \times 200 = 120 \text{ seconds}$ 

Anuj's time =120-3=117 seconds

25. 
$$V_f = 4,37,500, V_i = 3,50,000$$

Nominal rate = 
$$\frac{V_f - V_i}{V_i} \times 100$$

$$=\frac{4,37,500-3,50,000}{3,50,000}\times100=25\%$$

**Section C** 

26. 
$$f'(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$$
  

$$\Rightarrow x = 1, 2, 3$$

Strictly increasing in  $(1,2) \cup (3,\infty)$ 

Strictly decreasing in  $\left(-\infty,1\right)\cup\left(2,3\right)$ 



27. Daily diet of team 
$$A = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2,500 & 65 \\ 1,900 & 50 \\ 2,000 & 54 \end{bmatrix} = \begin{bmatrix} 12,700 \\ 334 \end{bmatrix}$$

Team A consumes 12,700 calories and 334 g vitamin

Daily diet of team 
$$B = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2,500 & 65 \\ 1,900 & 50 \\ 2,000 & 54 \end{bmatrix} = \begin{bmatrix} 10,300 \\ 273 \end{bmatrix}$$

Team B consumes 10,300 calories and 273 g vitamin

$$28. \int \frac{dx}{\left(1+e^x\right)\left(1+e^{-x}\right)}$$

$$=\int \frac{e^x dx}{\left(1+e^x\right)^2}$$

$$=\int \frac{dt}{t^2}$$
, where  $t=e^x+1$  and  $dt=e^xdx$ 

$$=\frac{-1}{t}+C$$

$$=\frac{-1}{1+e^x}+C$$

28.  $\int_{II}^{x \log(1+x^2)dx}$ , Integration by parts

$$= \log(1+x^2) \cdot \int x \, dx - \int \left[ \frac{d}{dx} \log(1+x^2) \cdot \int x \, dx \right] dx$$

$$= \frac{x^2}{2} \log(1+x^2) - \int \left[ \frac{2x}{1+x^2} \cdot \frac{x^2}{2} \right] dx$$

$$= \frac{x^2}{2} \log(1+x^2) - \int \frac{x^3}{1+x^2} dx$$

OR



$$= \frac{x^2}{2} \log(1 + x^2) - \int \left[ x - \frac{x}{1 + x^2} \right] dx$$

$$= \frac{x^2}{2} \log(1+x^2) - \frac{x^2}{2} + \frac{1}{2} \log(1+x^2) + C$$

$$= \frac{1}{2} \left[ \left( 1 + x^2 \right) \log \left( 1 + x^2 \right) - x^2 \right] + C$$

29. Under pure competition,  $p_d = p_s$ 

$$\Rightarrow \frac{8}{x+1} - 2 = \frac{x+3}{2}$$

$$\Rightarrow x^2 + 8x - 9 = 0$$

$$\Rightarrow x = -9,1$$

$$\therefore x = 1$$

When 
$$x_0 = 1 \Rightarrow p_0 = 2$$

... Produce surplus 
$$= 2 - \int_0^1 \frac{x+3}{2} dx = 2 - \left[ \frac{x^2}{4} + \frac{3x}{2} \right]_0^1 = \frac{1}{4}$$

OR

**29.** 
$$p = 274 - x^2$$

$$\Rightarrow R = px = 274x - x^3$$

$$\frac{dR}{dx} = 274 - 3x^2$$

Given 
$$MR = 4 + 3x$$

In profit monopolist market,

$$MR = \frac{dR}{dx} \Longrightarrow 4 + 3x = 274 - 3x^2$$

$$\Rightarrow x^2 + x - 90 = 0$$

$$\Rightarrow x = -10.9$$



$$\therefore x = 9$$

When 
$$x_0 = 9 \Rightarrow p_0 = 193$$

$$\therefore \text{ Consumer surplus } = \int_0^9 \left(274 - x^2\right) dx - 193 \times 9$$

$$= \left[274x - \frac{x^3}{3}\right]_0^9$$

$$=486$$

30. Purchase = ₹ 
$$40,00,000$$

Down payment 
$$= x$$

Balance = 
$$40,00,000 - x$$

$$i = \frac{9}{1,200} = 0.0075, \ n = 25 \times 12 = 300$$

$$E = 30,000$$

$$\Rightarrow 30,000 = \frac{(4000000 - x) \times 0.0075}{1 - (1.0075)^{-300}}$$

$$\Rightarrow 30000 = \frac{\left(4000000 - x\right) \times 0.0075}{1 - 0.1062}$$

$$\Rightarrow$$
 *x* = 4, 24, 800

Down payment = 4,24,800

31. 
$$n = 10 \times 2 = 20, S = 10, 21, 760, i = \frac{5}{200} = 0.025, R = ?$$

$$S = R \left\lceil \frac{\left(1+i\right)^n - 1}{i} \right\rceil$$



$$\Rightarrow 10,21,760 = R \left[ \frac{\left(1 + 0.025\right)^{20} - 1}{0.025} \right]$$

$$\Rightarrow$$
 10, 21, 760 =  $R \left[ \frac{1.6386 - 1}{0.025} \right]$ 

$$\Rightarrow R = \left[\frac{10,21,760 \times 0.025}{0.6386}\right]$$

$$\Rightarrow R = 340,000$$

Mr Mehra set aside an amount of  $\ge 40,000$  at the end of every six months

# Section D

32. Probability of defective bucket = 0.03

$$n = 100$$

$$m = np = 100 \times 0.03 = 3$$

Let X = number of defective buckets in a sample of 100

$$P(X=r) = \frac{m^r e^{-m}}{r!}, r = 0,1,2,3,...$$

- (i) P (no defective bucket) =  $P(r=0) = \frac{3^0 e^{-3}}{0!} = 0.049$
- (ii) P (at most one defective bucket) = P(r=0,1)

$$=\frac{3^0e^{-3}}{0!}+\frac{3^1e^{-3}}{1!}$$

$$=0.049+0.147$$

$$=0.196$$



OR

32. X = scores of students,  $\mu = 45, \sigma = 5$ 

$$\therefore Z = \frac{X - \mu}{\sigma} = \frac{X - 45}{5}$$

(i) When X = 45, Z = 0

$$P(X > 45) = P(Z > 0) = 0.5$$

 $\Rightarrow$  50% students scored more than the mean score

(ii) When 
$$X = 30, Z = -3$$
 and when  $X = 50, Z = 1$ 

$$P(30 < X < 50) = P(-3 < Z < 1) = P(-3 < Z \le 1)$$

$$= P(-3 < Z \le 0) + P(0 \le Z < 1)$$

$$= P(0 \le Z < 3) + P(0 \le Z < 1)$$

$$=0.4987+0.3413=0.84$$

 $\Rightarrow$  84% students scored between 30 and 50 marks

33. Let  $\chi$  be the number of guests for the booking

Clearly, x > 100 to avail discount

$$\therefore \text{ Profit, } P = \left[ 4800 - \frac{200}{10} (x - 100) \right] x = 6,800x - 20x^2$$

$$\Rightarrow \frac{dP}{dx} = 6,800 - 40x \Rightarrow x = 170$$

As 
$$\frac{d^2p}{dx^2} = -40 < 0, \forall x$$

A booking for 170 guests will maximise the profit of the company And, Profit = ₹5,78,000



OR

33. 
$$P(x) = R(x) - C(x)$$

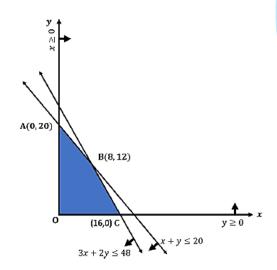
$$=5x - \left(100 + 0.025x^2\right)$$

$$\Rightarrow P'(x) = 5 - 0.05 x \Rightarrow x = 100$$

As 
$$P''(x) = -0.05 < 0, \forall x$$

... Manufacturing 100 dolls will maximise the profit of the company And, Profit =  $\mathbf{7}$  1,50,000

34. Let the number of tables and chairs be x and y respectively


(Max profit) Z = 22x + 18y

Subject to constraints:

$$x + y \le 20$$

$$3x + 2y \le 48$$

$$x, y \ge 0$$





The feasible region *OABCA* is closed (bounded)

| Corner points | Z = 22 x + 18 y |
|---------------|-----------------|
| O(0,0)        | 0               |
| A(0,20)       | 360             |
| B(8,12)       | 392             |
| C(16,0)       | 352             |

Buying 8 tables and 12 chairs will maximise the profit

35. 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$$

$$\Rightarrow |A| = 9 \Rightarrow A^{-1}$$
 exists

And 
$$A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix}$$

$$AX = B \Longrightarrow X = A^{-1}B$$

$$\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 10 \end{bmatrix}$$

$$\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$$

# **Section E**

#### CASE STUDY - I

36. a). Pipe C empties 1 tank in  $20 \text{ h} \Rightarrow \frac{2}{5} \text{th}$  tank in  $\frac{2}{5} \times 20 = 8$  hours

b). Part of tank filled in 1 hour 
$$=\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10} th$$



 $\Rightarrow$  time taken to fill tank completely = 10 hours

c). At 5am,

Let the tank be completely filled in 't' hours

 $\Rightarrow$  pipe A is opened for 't' hours

pipe B is opened for 't-3' hours

And, pipe C is opened for 't-4' hours

 $\Rightarrow$  In one hour,

part of tank filled by pipe  $A = \frac{t}{15} th$ 

part of tank filled by pipe  $B = \frac{t-3}{15}$  th

and, part of tank emptied by pipe  $C = \frac{t-4}{15}$ th

Therefore 
$$\frac{t}{15} + \frac{t-3}{12} - \frac{t-4}{20} = 1$$

$$\Rightarrow t = 10.5$$

Total time to fill the tank =10 hours 30 minutes

OR

36. 6 am , pipe C is opened to empty  $\frac{1}{2}$  filled tank

Time to empty =10 hours

Time for cleaning =1 hour

Part of tank filled by pipes A and B in 1 hour =  $\frac{1}{15} + \frac{1}{12} = \frac{3}{20}$  th tank

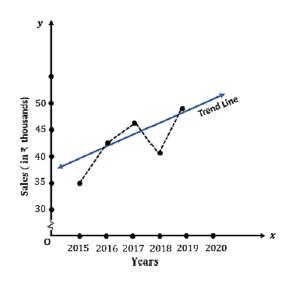
 $\Rightarrow$  time taken to fill the tank completely  $=\frac{20}{3}$  hours

Total time taken in the process  $=10+1+\frac{20}{3}=17$  hour 40 minutes



## **CASE STUDY - II**

37. a)


| Year | Y   | X  | $X^2$ | XY  |
|------|-----|----|-------|-----|
| 2015 | 35  | -2 | 4     | -70 |
| 2016 | 42  | -1 | 1     | -42 |
| 2017 | 46  | 0  | 0     | 0   |
| 2018 | 41  | 1  | 1     | 41  |
| 2019 | 48  | 2  | 4     | 96  |
|      | 212 |    | 10    | 25  |

$$a = \frac{\sum Y}{n} = \frac{212}{5} = 42.4$$
 and  $b = \frac{\sum XY}{\sum X^2} = \frac{25}{10} = 2.5$ 

$$Y_C = 42.4 + 2.5X$$

OR

| Year | Y  | 3-year moving |  |
|------|----|---------------|--|
|      |    | average       |  |
| 2015 | 35 |               |  |
| 2016 | 42 | 41            |  |
| 2017 | 46 | 43            |  |
| 2018 | 41 | 45            |  |
| 2019 | 48 | -             |  |





b) For year 2022,

$$Y_{2022} = 42.4 + 2.5(2022 - 2017) = 54.9$$

 $\Rightarrow$  the estimated sales for year 2022 = ₹ 54,900

c) 
$$Y_C = 42.4 + 2.5X$$

$$\Rightarrow$$
 67.4 = 42.4 + 2.5 $X$ 

$$\Rightarrow X = 10$$

Sales will be ₹ 67,400 in year (2017+10) = year 2027

#### **CASE STUDY - III**

38. a) 
$$\frac{k}{6} + \frac{2k}{6} + \frac{3(1-k)}{6} + \frac{4k}{2} = 1 \Rightarrow k = \frac{1}{4}$$

b) P (getting admission on applying at least 2 weeks ahead of application deadline)

$$=P(X=2,3,4)$$

$$=\frac{1}{12}+\frac{3}{8}+\frac{1}{2}=\frac{23}{24}$$

[alternated method: 
$$1 - P(X = 1) = 1 - \frac{1}{24} = \frac{23}{24}$$
]

c) X = week applied ahead of application deadline

| X     | 1              | 2              | 3             | 4             |
|-------|----------------|----------------|---------------|---------------|
| P(X)  | $\frac{1}{24}$ | $\frac{1}{12}$ | $\frac{3}{8}$ | $\frac{1}{2}$ |
| XP(X) | $\frac{1}{24}$ | $\frac{1}{6}$  | $\frac{9}{8}$ | 2             |

$$E(X) = \frac{80}{24} = 3\frac{1}{3}$$
 weeks

OR

X =Scholarship money awarded for the week applied in, before the deadline



| Week applied | 1                  | 2                   | 3                  | 4             |
|--------------|--------------------|---------------------|--------------------|---------------|
| in           |                    |                     |                    |               |
| X            | 9,600              | 12,000              | 20,000             | 50,000        |
| P(X)         | $\frac{1}{24}$     | $\frac{1}{12}$      | $\frac{3}{8}$      | $\frac{1}{2}$ |
| XP(X)        | $\frac{9,600}{24}$ | $\frac{12,000}{12}$ | <u>60,000</u><br>8 | 50,000        |

$$\therefore E(X) = 33,900$$

