

JEE ADVANCED-2015

CHEMISTRY

Q.21 Sol. (1)

Given that the complex is a strong electrolyte, therefore, it dissociates completely.

According to vant-hoff's equation,

 $\Delta T_{f} = k_{f} \times m \times i$

 $\Delta T_{\rm f} = 0.0558^{\circ}C = 0.0558 \, {\rm K}$

:. $0.0558 \text{ K} = 1.86 \text{ kg mol}^{-1} \times .01 \text{ m} \times \text{i}$ i = 3

: the no. of ions after dissociation =3

Let the no. of chloride ions outside the coordination sphere is x

$$\left[\operatorname{co}(\mathrm{NH}_{3})\operatorname{cl}_{y}\right]\operatorname{cl}_{x} \rightarrow \operatorname{xcl}^{-} + \left[\operatorname{co}(\mathrm{NH}_{3})\operatorname{cl}_{y}\right]$$

 $i = \frac{\text{no. of ions ofter dissociation}}{\text{no. of ions before dissociation}}$

$$3 = \frac{x+1}{1}$$

x = 2

 \therefore no. of chloride ions outside the sphere = 2

: To balance the charge on the complex, 1chloride ion has to go inside the sphere

 \therefore Ans=1

Q.22 Sol. (4)

For the reaction

 $M^+ \rightarrow M^3 + 2e^-, E^\circ = -0.25V$

 ΔG° for the cell

 $\Delta G^{\circ} = -nf E^{\circ} cell$ = + 2×96500 cmol⁻¹×0.25V = 48250 J mol⁻¹

The ΔG° we are providing by the reaction $X \rightarrow Y$

 $\Delta G^{\circ}_{rxn} = -193000 \,\mathrm{J} \,\mathrm{mol}^{-1}$

 \therefore no. of moles of M⁺ oxidised to M³⁺ is

 $\frac{-193000 \, \text{J mol}^{-1}}{-48250 \, \text{J mol}^{-1}}$

=4

Q.23 Sol. (4)

 Fe^{3+} electronic conf. is $3d^5$

 SCN^- is a weak field ligand \rightarrow no pairing

CN – is strong field ligand \rightarrow causes pairing

magnetic moment for case I

$$\sqrt{n(n+2)} = \sqrt{1(1+2)} = \sqrt{3}$$

For case II

$$\sqrt{5(5+2)} = \sqrt{35}$$

Diff.in magnetic moment = 4.184 ≈ 4

Q.24 Sol.(8)

$$N_2O_3$$
 is
 $\ddot{O} = \overset{\textcircled{N}}{N} = \overset{\textcircled{O}}{N} - \overset{\textcircled{O}}{O} \overset{\textcircled{O}}{:}$
 \vdots

No. of lone pairs is 8

Q.25 Sol. (3)

Be Cl₂
$$\rightarrow \frac{1}{2}(2+2) = \frac{4}{2} = 2 \rightarrow \text{sp} \rightarrow \text{linear}$$

 $N_3^- \rightarrow azide \rightarrow Linear$

 $N_2O \rightarrow Linear$

 $NO_2^+ \rightarrow non-Linear$

 $O_3 \rightarrow$ non-Linear

 $SCl_2 \rightarrow Bent - v$

 $ICl_2^-, I_3^-, Xef_2 \rightarrow all have d orbits in central atom$

Q.26 Sol. (3)

$$Degeneracy = \sum_{1=0}^{n+1} (2L+1)$$

For Hatom

For H-ion , degeneracy =3 (for second excited state).

Q.27 Sol. (2)

no. of chiral centres =1

 $\therefore \operatorname{Ans} = 2^n = 2^1 = 2$

Q.28 Sol. (9)

Q.30 Sol. (A, B, C)

 Cr^{2+} is strongly reducing is nature. It has a d⁴ configuration. While acting as a reducing agent, it gets oxidized to Cr^{3+} (electronic configuration, d³). This d³ configuration can be written as t^{3}_{2g} configuration, which is a more stable configuration,

In the case of $Mn^{3+}(d^4)$ it acts as an oxidizing agent and gets reduced to $Mn^{2+}(d^5)$. This has an exactly half – filled d- orbital and has an extra – stability.

Q.31 Sol. (B,C,D)

(B,C,D)

Process of electrolytic refining.

Q.32 Sol. (A, B)

 Fe^{3+} can be reduced by using either Na_2O_2 or H_2O_2 . While using H_2O_2 , the presence of basic medium is must.

Hence, Sol. (A), (B)

Q.33 Sol. (C)

Since the rxn is exothermic,

 \therefore it will be favored at low temp.

On increasing the temp, the rate of the rxn decreases.

 \therefore at every point of time,

The % yield at temp $T_2 < \%$ yield at T_1

The graph (c) explains the answer.

Q.34 Sol. (A)

 $O^{2-} \rightarrow ccp(4)$

 $Al^{3+} \rightarrow octahedral void(4)$

 $Mg^{2+} \rightarrow tetrahedral void(8)$

Considering the mineral of Al,O and Mg as

 $MgAl_2O_4$

 $O^{2-} \rightarrow 4$

 $Al^{3+} \rightarrow m = \frac{2}{4} = \frac{1}{2}$

 $Mg^{2+} \rightarrow n = \frac{1}{8}$

 \therefore the m and n values are

 $\frac{1}{2}, \frac{1}{8}$

Q.35 Sol. (B,D)

The reactions give optically inactive products

Q.37 Sol. (B)

Tertiary carbocation will be more stable.

Q.38 Sol. (A)

Q.39 Sol. (A-P,Q), (B-T),(C-Q,R) and (D-R,S)

The composition of the ores is:

- (P) Siderite \rightarrow carbonate.
- (Q) Malachite \rightarrow carbonate, hydroxide
- (R) Bauxite $(Al(OH)_3)$, $\gamma Al_{\downarrow} O(OH)$, $\alpha AlO(OH)$
- (S) calamine $(ZnO + ferric oxide)) \rightarrow oxide.$

(T) Argentite $\rightarrow Ag_2S \rightarrow sulphide$

 $\therefore \text{Ans is} \quad A \to P, Q$ $B \to T$ $C \to Q, R$ $D \to R, S$

Q.40 Sol. (A) $\rightarrow R, T, Q$

R, T, Q

during the phase change,

work done = w = 0

change in internal energy is less than O

& since the rxn. occurs at equilibrium,

 $\Delta G = O$

(B) $\rightarrow P, Q, S$

(C) $\rightarrow P, Q, S$

During the mixing of equal volumes of two ideal gases at constant T and P in an isolated container, heat change taking place is O,

Work done is zero

- $(\mathrm{C}) \to P, Q, S$
- $\Delta U = 0$
- (D) $\rightarrow P, Q, S, T$

