

JEE ADVANCED-2015

CHEMISTRY

Q.21 Sol. (3)

acetyl	$CH_3 CO \rightarrow mono coordination$
Bromido	$Br^- \rightarrow mono coordination$
dicarbonyl	$CO\&CO \rightarrow di coordination$
bis(triethylphosphene)	\rightarrow di coordination

, (0 feln) 0 Щ B no. of Fe-C(bonds) is 3.

Q.22 Sol.(6)

Similar to the above structures, $\left[CO(NH_3)_4(H_2O)(Cl) \right]$

Also exists in cis & tarns forms

Q.23 Sol. (6)

The rxn is

 $B_2H_6 + 6CH_3OH \rightarrow 2B(OCH_3)_3 + 6H_2$

Q.24 Sol. (3)

 $\Lambda_{\rm mHX} = 10 \lambda_{\rm mHY}$

 $M_{HX} = 0.01 M$

 $M_{_{HY}}\!=\!0.10\,M$

given that $\lambda_{x_{-}}^{\infty} = \lambda_{y_{-}}^{\infty}$

$$\left(\frac{1000 \times k_{\rm HX}}{\rm M_{\rm HX}}\right) = \left(\frac{1000 \times k_{\rm HY}}{\rm M_{\rm HY}}\right) (10)$$

Solving this, we get

$$\left(\frac{k_a \mathrm{HY}}{k_a \mathrm{HX}}\right) = 1000$$

$$\Rightarrow \log \frac{k_a(\mathrm{HY})}{k_a(\mathrm{HX})} = 3$$

 $\Rightarrow \log Ka(HY) - \log Ka(HX) = 3$

$$-bKa(HY)+bKa(HX)=3$$

Q.25 Sol. (9)

We have to apply equation of state

PV = nRT

According to this, the pressure of mixture in the container is directly proportional to the no. of particles in the container.

²³⁸₉₂U undergoes ∞ (alpha) dissociation.

Till it reaches ${}^{206}_{82}$ Pb

Finally, in the container,

 $\frac{no. of particles after decay}{no. of particles before decay} = \frac{9}{1}$

$$\therefore \quad \frac{Pf}{Pi} = \frac{9}{1}$$

Q.26 Sol. (8)

$$8H^{+} + MnO_{4^{-}} + \left[Fe(H_{2}O)_{2}(ox)_{2}\right]^{2^{-}} \rightarrow Mn^{2^{+}} + Fe^{3^{+}} + 4CO_{2} + 6H_{2}O_{2} + 6H$$

$$\frac{\text{rate of Change of } \left[H^{+} \right]}{\text{rate of Change of } \left[MnO_{4}^{-} \right]} = 8 \quad \frac{\left[H^{+} \right]}{\left[MnO_{4}^{-} \right]} = 8$$

Q.27 Sol. (4)

Q.28 Sol. (4)

(i) Rxn is Gattermann Koch Rxn & gives benzaldehyde.

(ii) Treatment of $\overline{\mathcal{O}}^{\mathcal{O}}$ with water at high temp also yields benzaldehyde.

Also, on reduction of benzoylchoride

With H_2 yields benzaldehyde.

Reduction of (iv) also yields the product

Q.29 Sol. (B,C,D)

Surface $+ O_2 \rightarrow e^-$ transfer taken place.

 ${\rm O}^{}_{_2}\!+\!e^-\!\rightarrow {\rm O}^-_{_2}$ (bond length of ${\rm O}^-_2\!>\!{\rm O}^{}_2$)

heat is released during the rxn.

& on acceptance of e– by O_2 , the occupancy of π_{2p}^* of O_2 increases

Q.30 Sol. (B)

 $(CH_3)_3$ SiCl is used for chain termination rxn.

for chain propagation, we use $(CH_3)_2 SiCl_2$

Q.31 Sol. (C, D)

By looking at the concept of Qualitative analysis, we can say that Cu^{2+} , Pb^{2+} and Hg^{2+} can be precipitated upon passing H_2S in dil aq. sol of salts.

Q.32 Sol. (B,C)

$$\mu = 0 = 0 = 0 = 0 = 0 = 0$$

Acc. to the above structures,

the correct statements are (C)(B)

Q.33 Sol. (A)

Q.35 Sol. (A)

Q.36 Sol. (C)

$$P(V-b) = RT$$

$$\Rightarrow PV - Pb = RT \Rightarrow \frac{PV}{RT} = \frac{PB}{RT} + 1$$

$$\Rightarrow Z = 1 + \frac{Pb}{RT}$$
Hence Z>1 at all pressures.

This means, repulsive tendencies will be dominant when interatomic distance are small.

This means, interatomic potential is never negative but becomes positive at small interatomic distances.

Hence answer is (C)

Q.37 Sol. (A)

Let the heat capacity of insulated beaker be C.

Mass of aqueous content in expt.1 = $(100+100) \times 1$ = 200 g

 \Rightarrow Total heat capacity = $(C+200\times4.2)J/K$

Moles of acid, base neutralised in expt.1= $0.1 \times 1=0.1$

 \Rightarrow Heat released in expt1=0.1×57=5.7 KJ

 \Rightarrow 5.7×1000=(C+200×4.2)× Δ T.

$$5.7 \times 1000 = (C + 200 \times 4.2) \times 5.7$$

$$\Rightarrow (C+200\times 4.2)=1000$$

In second experiment,

 $nCH_{3}COOH = 0.2, n_{NaOH} = 0.1$

Total mass of aqueous content $= 200 \, g$

 \Rightarrow Total heat capacity = (C+200×4.2)=1000

 \Rightarrow Heat released =1000 × 5.6 = 5600 J

Overall, only 0.1 mol of CH₃COOH undergo neutralization.

$$\Rightarrow \Delta H_{neutralization} \text{ of } CH_3COOH = -\frac{5600}{0.1} = -56000 \text{ J/mol}.$$

$$\Rightarrow \Delta H_{ionization} \text{ of } CH_3COOH = 57 - 56 = 1 \text{ KJ/mol} = -56 \text{ KJ/mol}.$$

$$\Rightarrow \Delta H_{ionization} \text{ of } CH_3COOH = 57 - 56 = 1 \text{ KJ/mol}$$

Q.38 Sol. (B)

$$C_{8}H_{6} \xrightarrow{Pd-BaSO_{4}} C_{8}H_{8} \xrightarrow{i:B_{2}H_{6}} \mathbf{x}$$

$$\downarrow H_{2}O$$

$$\downarrow H_{2}O$$

$$H_{3}SO_{4}, H_{2}SO_{4}$$

$$i:EtMgBr, H_{2}O$$

$$ii.H^{+}, heat$$

Final solution contains 0.1 mole of CH₃COOH and CH₃COONa each.

Hence it is a buffer solution

$$pH = pk_a + \log \frac{C[H_3COO]}{[CH_3COOH]}$$

Q.39 Sol. (C)

Q.40 Sol. (D)

