

JEE ADVANCED-2017

CHEMISTRY

19. Ans. (D)

Sol. H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_5 H_5 H_5 H_6 H_7 H_8 H_8 H_9 H_9

The conjugate acid is stabilized by resonance with only one
$$NH_2$$
 group.

(III) Least basic, as the LP is used in aromaticity.

20. Ans. (A)

Sol. As T increases, V.P increases. So C & D option get rejected.

$$\Delta T_f = K_f \times m$$

$$273 - T_f' = 2 \times \frac{34.5/46}{0.5}$$

$$\therefore T_f' = 270 \,\mathrm{K}$$

21. Ans. (A)

Sol.

$$\begin{array}{c} OH \\ \hline \\ NH_2 \\ \hline \\ (i) \ NaNO_2, HCl, 0^{\circ}C \\ \hline \\ N=N \\ \hline \end{array}$$

$$\begin{array}{c} OH \\ \hline \\ N=N \\ \hline \\ OH \\ \hline \\ N=N \\ \hline \end{array}$$

$$\begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ N=N \\ \hline \end{array}$$

22. Ans. (C)

Sol.

$$\Delta G = \Delta G^{\circ} + 2.303RT \log_{10} Q; Q = \frac{\text{Zn}^{\circ}}{\text{Cu}^{\circ}}$$

$$= -2F(1.1) + 2.303RT \log_{10} 10$$

$$= 2.303RT - 2.2F$$

23. Ans. (B)

Sol. Correct Order:
$$H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$$

24. Ans. (C)

Sol.

$$dG = VdP - SdT$$

At
$$298K, SdT = 0$$

$$\therefore dG = VdP$$

$$\int_{1}^{P} dG - \int_{1}^{P} V dP \qquad \therefore G - G^{\circ} = V(P - 1) \quad [\because \text{ Solids involved } \therefore V \text{ Almost Constant }]$$

$$\therefore \Delta_r G = \left[G^{\circ}_{\text{diamond}} + V_d \left(P - 1 \right) \right] - \left[G^{\circ}_{\text{graphite}} + V_g \left(P - 1 \right) \right]$$

$$0 = 2.9 \times 10^{3} + (P-1)10^{5} (-2 \times 10^{-6})$$

:.
$$P = 14501$$
bar

25. Ans. (D)

Sol.

 $Fe+conc.HNO_3 \longrightarrow Passivity$

$$Cu+conc.HNO_3 \longrightarrow NO_2$$

$$Au+NaCN+O_2 \longrightarrow [Au(CN)_2]^-$$

$$Zn+NaOH \longrightarrow Na_2ZnO_2+H_2$$

26. Ans. (AB)

Sol.

$$\Delta S_{\text{Surr}} = \frac{-\Delta H}{T_{\text{Surr}}}$$

For endothermic, if T_{Surr} , increases, ΔS_{Surr} will increses.

For exothermic, if T_{Surr} , increases, ΔS_{Surr} will decreses.

27. Ans. (AB)

Sol.

(A) E_a is independent of steric factor

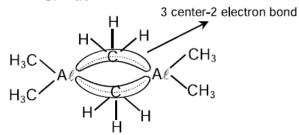
(B)
$$P = \frac{K_{\text{actual}}}{K_{\text{theroretical}}}$$

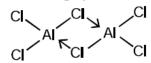
So,
$$A_{\text{actual}} > A_{\text{theroretical}}$$

28. Ans. (ACD)

Sol.

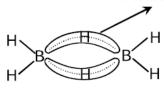
(C) I is
$$\bigcirc$$
 Br (1° benzylic halide) and C-C-Br (3° alkyl halide). Follow S_N1.


(D) I and II follow $S_{N}2$ also, as both are 1° halide.


29. Ans. (ABD)

Sol.

Structure of Al₂(CH₃)₆



- $\Rightarrow BCI_3$ is stronger lewis acid due to small size of boron.
- \Rightarrow Structure of Al₂Cl₆

 \Rightarrow Structure of B₂H₆

3 centre 2-electron bond

30. Ans. (CD)

Sol.

 $NO \Rightarrow Neutral$

 $B_2O_3 \Rightarrow Acidic$

CrO ⇒ Basic

All other oxides are amphoteric

31. Ans. (AC)

Sol.

- Higher the critical temperature, higher will be extent of adsorption.
- Cloud is an arosol, imulsions are liquid-liquid colloidal system.
- For adsorption $\Delta H \Rightarrow negative : \Delta S \Rightarrow negative$
- **>** Brownian movement of colloidal particals depends on size of particles.

32. Ans. (CD)

Sol.

(C)
$$CH_3$$
 $(C) CH_3$
 (C)

33. Ans.(D)

34. Ans.(A)

Sol.

(33 & 34)

$$KClO_{3} \xrightarrow{\quad \Delta \quad } KCl + \underset{(W)}{O_{2}}$$

$$\underset{(\text{white})}{P_4} + \underset{(\text{excess})}{O_2} \longrightarrow P_4 O_{10}$$

Paragraph 2

The reaction of compound P with CH_3MgBr (excess) in $(C_2H_5)_2O$ followed by addition of H_2O gives Q. The compound Q on treatment with H_2SO_4 at $0^{\circ}C$ gives R. The reaction of R with CH_3COCl in the presence of anhydrous $AlCl_3$ in CH_2Cl_2 followed by treatment with H_2O produces compound S. [Et in compound P is ethyl group]

$$(H_3C)_3C$$
 $CO_2Et \rightarrow Q \rightarrow R \rightarrow S$

35. Ans. (B)

Sol.

$$(CH_3)_3C \xrightarrow{CO_2Et} \xrightarrow{(i) CH_3MgBr \text{ in excess}} (CH_3)_3C \xrightarrow{CH_3} \xrightarrow{H_2SO_4/0^{\circ}C} (CH_3)_3C \xrightarrow{CH_3} (CH_3)_3C \xrightarrow{CH$$

36. Ans. (B)

Sol.

Process involved in $Q \rightarrow R$ reaction is alkylation

Process involved in $R \rightarrow S$ reaction is acylation.