

AIEE-2002

CHEMISTRY

80. Sol.

The nitro group can attach to metal through nitrogen as $(-NO_2)$ or through oxygen as nitrito (-ONO)

81. Sol.

 $-CH_3$ group has +I effect, as number of $-CH_3$ group increases, the inductive effect increases.

82. Sol.

Bond between C of organic molecule and metal atom.

84. Sol.

 $(HSO_4)^-$ can accept and donate a proton

$$(\mathrm{HSO}_4)^- + \mathrm{H}^+ \rightarrow \mathrm{H}_2\mathrm{SO}_4$$

$$(\mathrm{HSO}_4)^- - \mathrm{H}^+ \rightarrow \mathrm{H}_2\mathrm{SO}_4^{2-}$$

85. Sol.

$$Mg(OH)_{2} \rightarrow [Mg^{2+}] + 2[OH^{-}]$$

$$x \qquad 2x$$

$$K_{sp} = [Mg][OH]^{2} = [x][2x]^{2} = x.4x^{2} = 4x^{3}$$

$$K = (mol L^{-1})^{1-n} sec^{-1}, n = 0, 1$$

87. Sol.

XeF ₂	sp ³ d	3 lone pairs
XeF ₄	sp^3d^2	2 lone pairs
XeF ₆	sp ³ d ³	1 lone pair

89. Sol.

Order is the sum of the power of the concentrations terms in rate law expression.

91. Sol.

According to bond order values the given order is the answer. Bond order values are $+1, +1\frac{1}{2}, +2$ and $+2\frac{1}{2}$, higher bond order means stronger bond.

92. Sol.

 $\Delta H + ve$ at low temperature and $\Delta S + ve$ at low temperature shows that reaction is non spontaneous

At high temperature (boiling point) becomes feasible

93. Sol.

Some mechanical energy is always converted (lost) to other forms of energy.

According to their positions in the periods, these values are in the order :

 $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$

At nos. 70 61 58 57

This is due to lanthanide contraction

96. Sol.

 KO_2 is a very good oxidising agent

 $_{7}$ N = 1s²2s²3p³; P=1s²2s²2p⁶3s²3p³

In phosphorous the 3d - orbitals are available,

100. Sol.

PV = nRT (number of moles = n/V) $\therefore n/V = P/RT$

103. Sol.

 NH_4^+ ions are increased to suppress release of OH^- ions, hence solubility product of $Fe(OH)_3$ is attained. Colour of precipitate is different.

104. Sol.

According to molecular weight given

 2^{nd} excited state will be the 3rd energy level

$$E_n = \frac{13.6}{n^2} eV$$
 or $E = \frac{13.6}{9} eV = 1.51 eV$

110. Sol.

$$CH_{3}CH_{2}COOH \xrightarrow{Cl_{2}}{red P} \rightarrow CH_{3}CHCICOOH \quad alc.KOH \rightarrow CH_{2} = CHCOOH _-HCL \rightarrow CH_{2} = CHCOOH Acrylic acid$$

111. Sol.

Alumina is mixed with cryolite which acts as an electrolyte

112. Sol.

Silver ore forms a soluble complex with NaCN from which silver is precipitated using scrap zinc.

$$Ag_{2}S+2NaCN \rightarrow Na[Ag(CN)_{2}] \xrightarrow{Zn} \rightarrow Na_{1}[Zn(CN_{4})] + Ag \downarrow$$

Sod. argento - cyanide (soluble)

114. Sol.

$$\Delta T_{b} = K_{b} \times \frac{W_{B}}{M_{B} \times W_{A}} \times 1000; \\ \Delta T_{f} = K_{f} \frac{W_{B}}{M_{B} \times W_{A}} \times 1000; \\ \frac{\Delta T_{b}}{\Delta T_{f}} = \frac{\Delta K_{b}}{\Delta K_{f}} = \frac{\Delta T_{b}}{-0.186} = \frac{0.512}{1.86} = 0.0512^{\circ}C_{b} + 0.0512$$

115. Sol.

 E_{cell} = Reduction potential of cathode (right) – reduction potential of anode (left)

 $= E_{right} - E_{left}$

$$\Delta x.\Delta v \frac{h}{2\pi m}$$

117. Sol.

Acetylene reacts with the other three as

$$CH \equiv CNa \xleftarrow[iq. NH_3]{} CH \equiv CH \xrightarrow{+HCI} \rightarrow []{} CH_2 \xrightarrow{+HCI} \rightarrow []{} CH_3 \xrightarrow{+HCI} \rightarrow []{} CHCI \xrightarrow{+HCI} \rightarrow []{} CHCI_2$$

$$\downarrow [AgNO_3 + NH_4OH] \xrightarrow{+HCI} CHCI_2$$

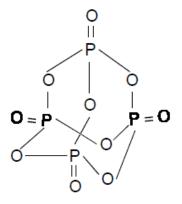
$$AgC \equiv CAg + NH_4NO_3$$
white ppt

118. Sol.

In this reaction the ratio of number of moles of reactants to products is same i.e. 2:2, hence change in volume will not alter the number of moles.

119. Sol.

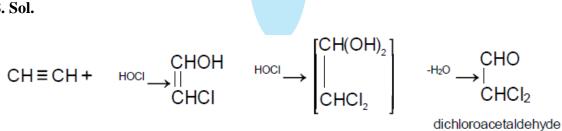
 Δ H negative shows that the reaction is spontaneous. Higher value for Zn shows that the reaction is more feasible.


120. Sol.

 Mn^{2+} has the maximum number of unpaired electrons (5) and therefore has maximum moment.

121. Sol.

Inmolecules (a), (c) and (d), the carbon atom has a multiple bond, only (b) has sp³ hybridisation


126. Sol.

Beryllium shows anomalous properties due to its small size

127. Sol.

 $E_{cell} = E_{right (cathode)} - E_{left(anode)}$

128. Sol.

129. Sol.

Aldehydic group gets oxidised to carboxylic group Double bond breaks and carbon gets oxidised to carboxylic group

The E^0 of cell will be zero

132. Sol.

 $C_2H_5NH_2 + CHCl_3 + 3KOH \rightarrow C_2H_5N = C + 3KCl + 3HCl$ Ethyl isocyanide

135. Sol.

After every 5 years amount is becoming half.

 $\therefore 64g \xrightarrow{5yrs} \rightarrow 32g \xrightarrow{5yrs}_{(10)} \rightarrow 16g \xrightarrow{5yrs}_{(15)} \rightarrow 8g$ after 15 years.

136. Sol.

Forms a soluble complex which is precipitated with zinc

138. Sol.

Volume increases with rise in temperature.

141. Sol.

Pure metal always deposits at cathode

142. Sol.

A more basic ligand forms stable bond with metal ion, Cl⁻ is most basic amongst all

 $_{0}n^{1} \rightarrow _{_{+1}}p^{1} + _{_{-1}}e^{0}$

144. Sol.

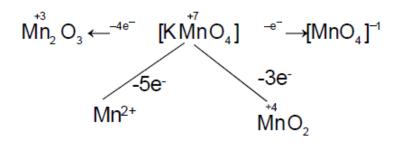
 $\left[\Delta H_{mix} < 0\right]$

146. Sol.

BCC - points are at corners and one in the centre of the unit cell

Number of atoms per unit cell = $8 \times \frac{1}{8} + 1 = 2$

FCC - points are at the corners and also centre of the six faces of each cell


Number of atoms per unit cell = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$

147. Sol.

Fe(no. of moles) = $\frac{558.5}{55.85}$ = 10 moles

C(no. of moles) = 60/12 = 5 moles.

148. Sol.

The oxidation states show a change only in reaction (d)

$$\overset{0}{\operatorname{Zn}}$$
 + w $\overset{+1}{\operatorname{A}}$ gCN \rightarrow 2A $\overset{0}{\operatorname{g}}$ + $\overset{+2}{\operatorname{Zn}}$ (CN)²

150. Sol.

$$K_{p} = K_{c} (RT)^{\Delta n}; \Delta n = 1 - \left(1 + \frac{1}{2}\right) = 1 - \frac{3}{2} = -\frac{1}{2}$$

 $\therefore \frac{K_{p}}{K_{c}} = (RT)^{-1/2}$