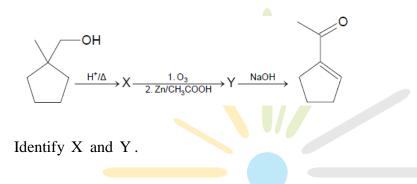


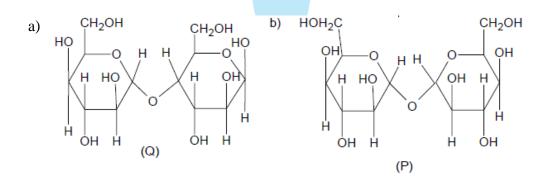
JEE MAIN - 2005

CHEMISTRY

[Time: 2 hours]


General Instructions :

- Note: Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.
- Q.1. Monomer A of a polymer on ozonolysis yields two moles of HCHO and one mole of CH₃COCHO.
 - a) Deduce the structure of A.
 - b) Write the structure of "all cis" form of polymer of compound A.
- **Q.2.** Fill in the blanks
 - a) ${}^{235}U_{92} + {}_{0}n^{1} \rightarrow {}^{137}A_{52} + {}^{97}B_{40} + \dots$ b) ${}^{82}Se_{34} \rightarrow 2_{-1}e^{0} + \dots$
- **Q.3.** a) Calculate the amount of Calcium oxide required when it reacts with 852 gm of P_4O_{10} .
 - b) Write the structure of P_4O_{10} .
- **Q.4.** An element crystallizes in fcc lattice having edge length 400 pm. Calculate the maximum diameter of atom which can be placed in interstitial site without distorting the structure.



- **Q.5.** 20% surface sites have adsorbed N_2 . On heating N_2 gas evolved from sites and were collected at 0.001 atm and 298 K in a container of volume is 2.46 cm³. Density of surface sites is 6.023×10^{14} /cm² and surface area is 1000 cm², find out the no. of surface sites occupied per molecule of N_2 .
- Q.6. Predict whether the following molecules are iso structural or not. Justify your answer.
 - (i) NMe₃ (ii) N $(SiMe_3)_3$

Q.7.

Q.8. Which of the following disaccharide will not reduce Tollen's reagent?

Q.9. Write balanced chemical equation for developing a black and white photographic film. Also give reason why the solution of sodium thiosulphate on acidification turns milky white and give balance equation of this reaction.

- **Q.10.** $\operatorname{Fe}^{3_+} \xrightarrow{\operatorname{SCN}^-(\operatorname{excess})} \operatorname{blood} \operatorname{red}(A) \xrightarrow{\operatorname{F}^-(\operatorname{excess})} \operatorname{colourless}(B)$
 - Identify A and B.
 - a) Write IUPAC name of A and B.
 - b) Find out spin only magnetic moment of B.
- **Q.11.** $2X_{(g)} \rightarrow 3Y_{(g)} + 2Z_{(g)}$

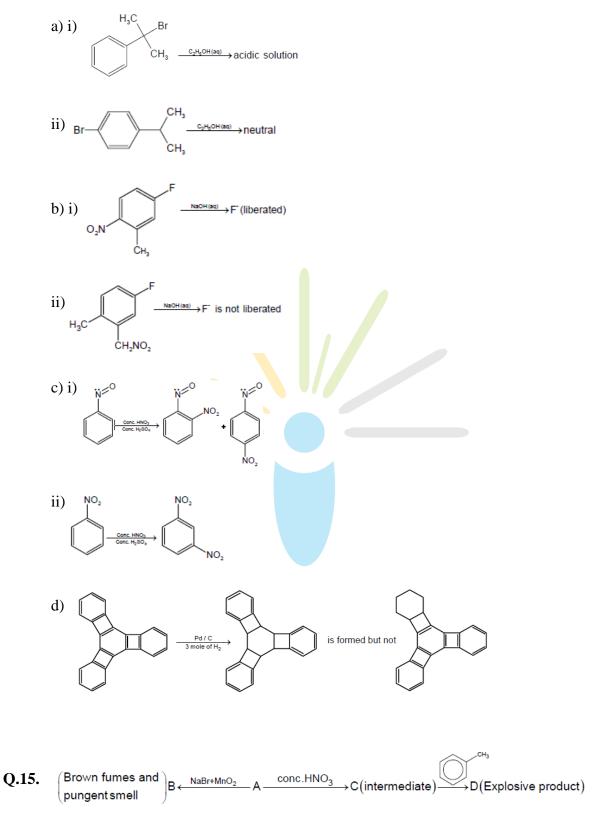
Time (in Min)	0	100	200
Partial pressure of X (in mm of Hg)	800	400	200

Assuming ideal gas condition. Calculate

- a) Order of reaction
- b) Rate constant.
- c) Time taken for 75% completion of reaction.
- d) Total pressure when $P_x = 700 \text{ mm}$.

Q.12. a) Calculate velocity of electron in first Bohr orbit of hydrogen atom (Given $r = a_0$).

b) Find de-Broglie wavelength of the electron in first Bohr orbit.


- c) Find the orbital angular momentum of 2p orbital in terms of $h/2\pi$ units.
- **Q.13.** $C_5H_{13}N \xrightarrow[(X)]{NaNO_2,HCl} Y (Tertiary alcohol + other products)$

(Optically active)

Find X and Y. Is Y optically active? Write the intermediate steps.

Q.14. Give reasons:

Find A, B, C and D. Also write equations A to B and A to C.

Q.16.	(B)←	Moist air	- MCL	Zn	(A)
		white fumes having pungent smell	(M=transitionelement colourless)	, (purple color)

Identify the metal M and hence MCl₄. Explain the difference in colours of MCl4 and A.

Q.17.
$$\mu_{\text{obs}} = \sum \mu_i \mathbf{X}_i$$

Where μ_i is the dipole moment of stable conformer and x_i is the mole fraction of that conformer.

a) Write stable conformer for $Z - CH_2 - CH_2 - Z$ in Newman's projection. If $\mu_{\rm solution}$ =1.0D and mole fraction of anti form =0.82, find $\,\mu_{\rm Gouche}\,.$

b) Write most stable meso conformer of CHDY

If (i) $Y = CH_3$ about $C_2 - C_3$ rotation and (ii) Y = OH about $C_1 - C_2$ rotation.

Q.18. a) Calculate ΔG_r^0 of the following reaction

$$\begin{array}{l} Ag_{(aq)}^{+} + Cl_{(aq.)}^{-} \rightarrow AgCl(s) \\ Given \\ \Delta G_{f}^{0}(AgCl) & -109 \, \text{KJ/mole} \\ \Delta G_{f}^{0}(Cl^{-}) & -129 \, \text{kJ/mole} \\ \Delta G_{f}^{0}(Ag^{+}) & 77 \, \text{KJ/mole} \end{array}$$

Represent the above reaction in form of a cell.

Calculate E° of the cell. Find $\log_{10} K_{sp}$ of AgCl.

b) 6.539×10^{-2} g of metallic Zn(amu = 65.39) was added to 100 ml of saturated solution of AgCl.

Calculate $\log_{10} \frac{\left[Zn^{2+}\right]}{\left[Ag^{+}\right]^{2}}$. Given that $Ag^+ + e^- \rightarrow Ag \quad E^0 = 0.80 V$ $Zn^2 + 2e^- \rightarrow Zn \quad E^0 = -0.76 V$

Also find how many moles of Ag will be formed?