

IIT-JEE-2007

PAPER-II

CHEMISTRY

23. Solution: (A)

Same charges are present at nearest position (Less stable)

$$(A) \qquad \bigoplus_{\Theta} \bigoplus_{\Theta$$

Hence (A) is correct

24. Solution: (A)

$$H_2O(g)$$
f $H_2O(g)$

At $100^{\circ}C$ H₂O(1) has equilibrium with H₂O(g) therefore $\Delta G = 0$.

Because liquid molecules are converting into gases molecules therefore $\Delta S = +ve$ Hence (A) is correct.

25. Solution: (A)

Hence (A) is correct.

26. Solution: (D)

 $aG+bH \rightarrow Products$

$$rate \propto [G]^a [H]^b$$

$$a = 1$$
, $b = 2$ a = 1, b = 2

Hence (D) is correct

27. Solution: (B)

(A) Mn⁺=3d⁵4s¹in presence of CO effective configuration 3d⁶4s⁰.

Three lone pair for back bonding with vacant orbital of C in CO.

(B) $Fe^0 = 3d^64s^2$ in presence of CO effective configuration = $3d^8$ four lone pair for back bonding with CO.

(C)
$$Cr^0 = 3d^5 4s^1$$

Effective configuration 3d⁶.

Three lone pair for back bonding with CO.

(D) $V^- = 3d^6 4s^2$ effective configuration = $3d^6$ three lone pair for back bonding with CO.

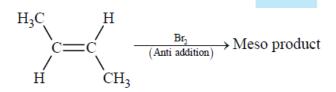
Maximum back bonding is present in $Fe(CO)_5$ there for CO bond order is lowest here.

28. Solution: (C)

On position emission from nucleus, proton converts into neutron therefore atomic number decreases by one but atomic mass remains constant.

$$\frac{Atomic\ mass}{atomic\ number} = \frac{23}{10}$$

Hence (C) is correct.


29. Solution : (D)

$$\operatorname{Cr_2O_7^{2-}} + \operatorname{Fe}^{2+} \to \operatorname{Fe}^{3+} + \operatorname{Cr}^{3+}$$

 $n \ factor \ of \ \operatorname{Cr_2O_7^{2-}} = 6$
 $n \ factor \ of \ \operatorname{Fe}^{2+} = 1$

So to reduce one mole of dichromate 6 moles of Fe^{2+} are required.

Hence (D) is correct.

30. Solution : (A)

Hence (A) is correct.

31. Solution : (B)

$$\begin{split} &Hg^{2+} + KI \rightarrow HgI_2 \left(\text{Red ppt.} \right) \\ &HgI_2 + \underset{\left(\text{excess} \right)}{KI} \rightarrow H_2 HgI_4 \\ &Hg^{2+} + \text{Co} \left(\text{SCN} \right)_2 \rightarrow Hg \left(\text{SCN} \right)_2 \\ &\text{Soluble} \\ &g^{2+} + \text{Co} \left(\text{SCN} \right)_2 \rightarrow Hg \left(\text{SCN} \right)_2 \\ &\text{blue crystalline precipiates} \end{split}$$

SECTION - II

32. Solution : (C)

33. Solution : (B)

Blue colour is due to solvated electrons.

34. Solution : (C)

35. Solution : (C)

$$C_6H_{12}O_6 + fehling \ solution \rightarrow (C_6H_{11}O_7)^- + Cu_2O\downarrow$$
(Red ppt)

SECTION - III

36. (C)

$$OH_{aq}^{\circ}CHCl_{3} f \overset{\circ}{C}Cl_{3} + H_{2}O$$

 $CCl_{3}^{\circ} \rightarrow Cl^{\circ} + : CCl_{3}$

dichlorocarbene intermediate

37. Solution : (C)

OH_{aq}CHCl₃
$$f$$
 CCl₃ + H₂O
CCl₃ \rightarrow Cl⁰ + : CCl₃

dichlorocarbene intermediate

38. Solution : (B)

39. Solution : (C)

Reduction potential of l_2 is less than Cl_2 .

40. Solution : (D)

Reaction of Mn³⁺ with H₂O is spontaneous.

41. Solution : (A)

SECTION - IV

42. Solution: A - p, s

B-r

C - p, q

D - p

43. Solution: A - p, q, s

B - q

C-q, r, s

D-q, r

(Note: Assuming AgNO₃ is ammonical.)

(A)
$$NO_2$$
 O_2N

PhCHO + O_2N $NH-NH_2$ $PhHC=N-NH$

PhCHO + Ag_2O NH_3 $PhCOO^- + Ag \downarrow$ (white ppt.)

CN

PhCHO $\stackrel{KCN}{\longrightarrow}$ Ph O_2

(B)
$$CH_3C \equiv CH \xrightarrow{\text{ammonical AgNO}_3} CH_3 - C \equiv C^-Ag^+ \downarrow$$
(White part)

(C)
$$CN$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$PhCHO \xrightarrow{KCN} Ph \xrightarrow{C} O$$

$$\downarrow \qquad \qquad \downarrow$$

$$H$$

$$AgNO_3 + CN^- \longrightarrow AgCN \downarrow$$

(D) $AgNO_3 + \Gamma \longrightarrow AgI \downarrow$

44. Solution: A - p, s

B - p, q

C - q

D-q, r

Crystals class	Axial distances	Angles
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
Orthorhombic	a≠b≠c	$\alpha = \beta = \gamma = 90^{\circ}$
Hexagonal	a = b ≠ c	$\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$
Trigonal and rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$
Monoclinic	a≠b≠c	$\alpha = \beta = 90^{\circ}$ $\gamma \neq 90^{\circ}$
Triclinic	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$