

IIT-JEE-2009

PAPER - II

CHEMISTRY

SECTION - I

1. Answer: (D)

(driving force is conjugation from oxygen)

2. Answer: (B)

On the basis of stability of resonating structures.

3. Answer: (A)

$$Cr(CO)_6$$

$$Cr(24) = [Ar] 3d^5 4s^1$$

Since (CO) is strong ligand, in $Cr(CO)_6$ no unpaired election is present So 'spin only' magnetic moment is zero.

4. Answer: (D)

Given,
$$\log K = 6 - \frac{2000}{T}$$

Since,
$$\log K = \log A - \frac{Ea}{2.303RT}$$
 So, $A = 10^6 \sec^{-1}$ and $Ea = 38.3 \text{ kJ/mole}$

SECTION-II

5. Answer: (A, B, C)

6. Answer: (A, B, C)

Due to bulkiness of trimethylamine, it does not react.

7. Answer: (B, C)

8. Answer: (A, D)

9. Answer: (A, B, D)

SECTION - III

10. Answer: ((A-p,q,t)(B-p,s,t)(C-r,s)(D-p))

11. Answer:
$$((A - p, s) (B - q, s) (C - r, t) (D - q, t))$$

$$3\text{Cu} + \text{dil.8HNO}_3 \rightarrow 3\text{Cu} (\text{NO}_3)_2 + 4\text{H}_2\text{O} + 2\text{NO}$$

$$Cu + conc.4HNO_3 \rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$$

$$4Zn + dil.10HNO_3 \rightarrow 4Zn(NO_3)_2 + 5H_2O + N_2O$$

$$Zn + conc.4HNO_3 \rightarrow Zn(NO_3)_2 + 2H_2O + 2NO_2$$

SECTION-IV

12. Answer: (6)

$$2\text{MnO}_2 + 4\text{KOH} + \text{O}_2 \rightarrow 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O} \text{ O.S of Mn} = +6\text{ in K}_2\text{MnO}_4$$

13. Correct Answer: (4)

$$CuSO_4 \cdot 5H_2O \rightarrow \left[Cu(H_2O)_4\right]SO_4 \cdot H_2O$$

So, water molecules directly attached to Cu are 4.

14. Answer: (6)

Coordination number of Al is 6. It exists in ccp lattice with 6 coordinate layer structure.

15. Answer: (9)

Energy release at constant volume due to combustion of 3.5 gm of a gas Hence energy released due to the combustion of 28 gm (i.e., 1 mole) of a gas

$$= 2.5 \times 0.45 \times \frac{28}{3.5} = 9 \text{kJmol}^{-1}$$

16. Answer: (8)

$$\begin{split} &K_{a}\left(C_{6}H_{5}COOH\right)=1\times10^{-4}\\ &pH\,of\,0.01M\,C_{6}H_{5}COONa\\ &C_{6}H_{5}COO^{-}+H_{2}O\,f\quad C_{6}H_{5}COOH+OH^{-1}\\ &0.01(1-h)\\ &K_{h}=\frac{K_{w}}{K_{a}}=\frac{0.01h^{2}}{1-h}\\ &\frac{10^{-14}}{10^{-4}}=\frac{10^{-2}h^{2}}{1-h}\left(1-h\;;\;1\right)\\ &\left[OH^{-}\right]=0.01h=0.01\times10^{-4}=10^{-6}\\ &\left[H^{+}\right]=10^{-8}\\ &pH=8 \end{split}$$

17. Answer: (8)

Cyclic C₅H₁₀

For 3^{rd} structure 2 cis-trans and 1 optical isomer are possible.

Total 7 isomers.

18. Answer: (8)

$$_{92}$$
U²³⁸ $\xrightarrow{-6\alpha}$ $_{80}$ X²¹⁴ $\xrightarrow{-2\beta}$ $_{82}$ Pb²¹⁴ (6 α , 2 β), total 8 paritcles.

19. Answer: (4)

$$V_{\text{rms}_{(\text{Xgas})(400\text{K})}} = V_{\text{mp}_{(\text{Ygas})(60\text{K})}}$$

$$M.W.(X \text{ gas}) = 40; \text{M.W.}(Y \text{ gas}) = x$$

$$\sqrt{\frac{3RT_1}{M_1}} = \sqrt{\frac{2RT_2}{M_2}}$$

$$\sqrt{\frac{400 \times 3}{40}} = \sqrt{\frac{2 \times 60}{x}}$$

$$30 = \frac{120}{x}$$

$$x = 4$$