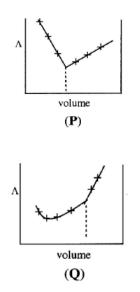
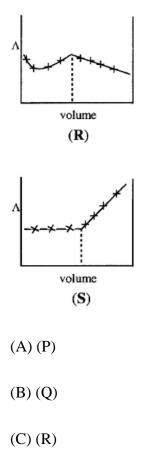


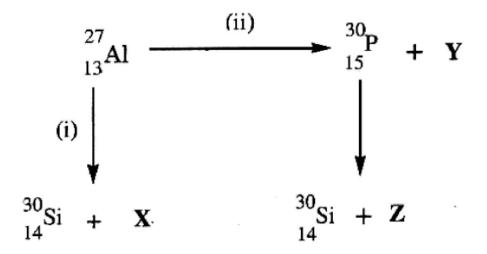
# **IIT-JEE-2011**


# PAPER-I

# CHEMISTRY

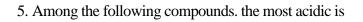

### SECTION-I

1. Geometrical shapes of the complexes formed by the reaction of  $\rm Ni_2$  with ClCN^-, and HO\_2 , respectively, are


- (A) octahedral, tetrahedral and square
- $(\mathbf{B})$  tetrahedral, square planar and octahedral
- (C) square planar, tetrahedral and octahedral
- (D) octahedral, square planar and octahedral
- 2. AgNO<sub>3</sub> (aq.) was added to an aqueous KCI solution gradually and the conductivity of the solution was measured. The plot of conductance ( ) versus the volume of AgNO<sub>3</sub> is



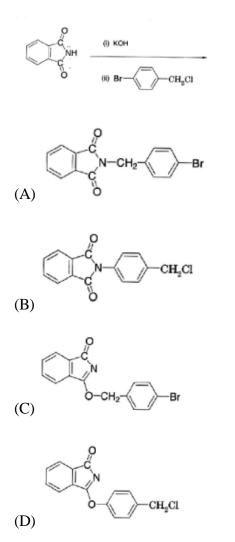





- (D) (S)
- 3. Bombardment of aluminum by □~ particle leads to its artificial disintegration in two ways,
  (i) and (ii) as shown. Products X, Y and Z respectively are






- (A) proton, neutron, positron
- (**B**) neutron, positron, proton
- (C) proton, positron, neutron
- (**D**) positron, proton, neutron
- 4. Extra pure  $N_2$  can be obtained by heating
  - (A) NH<sub>3</sub> with CuO
  - (B)  $NH_4NO_3$
  - $(C) (NH_4)_2 Cr_2 O_7$
  - (D)  $Ba(N_3)_2$

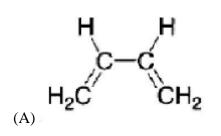


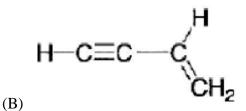
- (A) *p*-nitrophenol
- (B) *p*-hydroxybenzoic acid
- (C) o-hydroxybenzoic aicd
- (D) *p*-toluic acid



6. The major product of the following reaction is




- 7. Dissolving 120 g of urea (mol. wt, 60) in 1000 g of water gave a solution of density 1.15 g/mL. The molarity of the solution is
  - (A) 1.78M
  - (B) 2.00M
  - (C) 2.05M
  - (D) 2.22M




#### **SECTION-II**

#### Multiple Correct Answer Type

- 8. Extraction of metal from the ore **casiterite** involves
  - (A) carbon reduction of an oxide ore
  - (B) self-reduction of a sulphide ore
  - (C) removal of copper
  - (D) removal of iron impurity
- 9. Amongst the given options, the compound(s) in which all the atoms are in one plane in all the possible conformations (if any), is (are)





$$(C) H_2 C = C = O$$

$$(D) H_2C = C = CH_2$$



- 10. The correct statement (s) pertaining to the adsorption of a gas on a solid surface is (are)
  - (A) Adsorption is always exothermic
  - (B) Physisorption may transform into chemisorption at high
  - (C) Physisorption increases with increasing temperature but chemisorption decreases with increasing temperature
  - (D) Chemisorption is more exothermic than physisorption, however it is very slow due to higher energy of activation.
- 11. According to kinetic theory of gases
  - (A) collision are always elastic
  - (B) heavier molecules transfer more momentum to the wall of the container
  - (C) only a small number of molecules have very high velocity
  - (D) between collision the molecules move in straight lines with constant velocities.



### **SECTION-III**

### Paragraph Type

#### Paragraph for Question.

When a metal rod M is dipped into an aqueous colourless concentrated solution of compound N, the solution hum light blue. Addition of aqueous NaCl to the blue solution gives a white precipitate O, Addition of aqueous NH<sub>3</sub> dissolves O and gives an intesne blue solution.



13. The compound N is

(A) AgNO<sub>3</sub>

(B)  $Zn(NO_3)$ 

(C)  $Al(NO_3)_3$ 

(D)  $Pb(NO_3)_2$ 

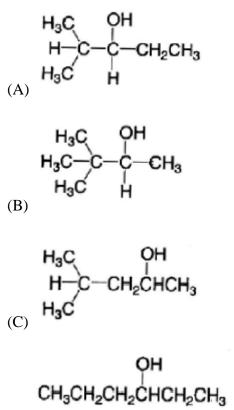


14. The final solution contains

(A) 
$$\left[ Pb(NH_3)_4 \right]^{2+}$$
 and  $\left[ CoCl_4 \right]^{2-}$   
(B)  $\left[ Al(NH_3)_4 \right]^{3+}$  and  $\left[ Cu(NH_3)_4 \right]^{2+}$   
(C)  $\left[ Ag(NH_3)_2 \right]^+$  and  $\left[ Cu(NH_3)_4 \right]^{2+}$   
(D)  $\left[ Ag(NH_3)_2 \right]^+$  and  $\left[ Ni(Ni(NH)_3)_6 \right]^{2+}$ 

## Paragraph for Question. Nis. 15 to16

An acyclic hydrocarbon P having molecular formula  $C_6H_{10}$  gave acetone as the only organic product through th following sequence of reactions, in which Q is an intermediate organo


$$\begin{array}{c} \mathsf{P} & \stackrel{(i) \text{ dil. } \mathsf{H}_2 \mathrm{SO}_4 / \mathsf{Hg} \mathrm{SO}_4}{(i) \text{ dil. } \mathsf{H}_2 \mathrm{SO}_4 / \mathsf{Hg} \mathrm{SO}_4} & \mathsf{Q} & \stackrel{(i) \text{ conc. } \mathsf{H}_2 \mathrm{SO}_4}{(catalytic amount)} & \overset{O}{\overset{(i)}{_{-}}} \\ (\mathsf{C}_6 \mathsf{H}_{10}) & \stackrel{(ii) \text{ NaBH}_4 / \text{ethanol}}{(\mathsf{iii}) \text{ dil. acid}} & \overset{(ii) \text{ O}_3}{(\mathsf{iii}) \text{ Zn/H}_2 \mathrm{O}} & \overset{O}{\overset{(ii)}{_{-}}} \\ \end{array}$$



15. The structure of compound P is

(A) 
$$CH_{3}CH_{2}CH_{2} - C \equiv C - H$$
  
(B)  $H_{3}CH_{2}C - C \equiv C - C - CH_{2}CH_{3}$   
(C)  $H_{3}C$   
(C)  $H_{3}C$   
(D)  $H_{3}C$   
(D)  $H_{3}C$   
(C)  $H_{3}C$   

16. The structure of the compound Q is





#### SECTION-IV

#### **Integer Answer Type**

- 17. Reaction of  $Br_2$  with  $Na_2CO_3$ , in aqueous solution gives sodium bromide and sodium bromate with evolution of  $CO_2$  gas. The number of sodium bromide molecules involved in the balanced chemical euqation is
- 18. The difference in the oxidation numbers of the two types of sulphur atoms in  $Na_2S_4O_6$  is
- 19. The maximum number of electrons that can have principal quantum number, n = 3, and spin quantum number  $m_5 = -\frac{1}{2}$ , is
- 20. A decapeptide (Mol. Wt 796) on complete hydrolysis gives glycine (Mol. Wt. 75). alanine and phenylanine. Glycine contributes 47.0% to the total weight of the hydrolysis products. The number of glycine units present in the decapeptide is
- 21. To an evacuated vessel with movable piston under external pressure of 1 atm, 0.1 mol of He and 1.0 mol. of an unknown compound (vapour pressure 0.68 atm. at 0°C) are introduced. Considering the ideal gas behaviour, the total volume (in litre) of the gases at 0°C is close to



- 22. The total number of alkenes possible by dehydrogenation of 3- bromo-3-cyclopentylhexane using alcoholic KOH is
- 23. The work function ( $\phi$ ) of some metals is listed below, The number of metals which will show photoelectric effec when light of 300 mn wavelength falls on the metal is

Metal Li Na K Mg Cu Ag Fe Pt W

 $\phi(eV)$  2.4 2.3 22 3.7 4.8 4.3 4.7 6.3 4.75

