

JEE MAIN - 2014

CHEMISTRY

- 61. Which one is classified as a condensation polymer?
 - (A) Acrylonitrile
 - (B) Dacron
 - (C) Neoprene
 - (D) Teflon
- 62. Which one of the following properties is **not** shown by NO?
 - (A) It's bond order is 2.5
 - (B) It is diamagnetic gaseous state
 - (C) It is a neutral oxide
 - (D) It combines with oxygen to form nitrogen dioxide
- 63. Sodium phenoxid when heated with CO_2 under pressure at $125^{\circ}C$ yields a product which on acetylation produces C.

ONa +
$$CO_2$$
 $\xrightarrow{125^{\circ}}$ B $\xrightarrow{H^{\circ}}$ C

The major product C would be:

64. Given below are the half –cell reactions:

$$Mn^{2+} + 2e^{-} \rightarrow Mn; E^{\circ} = 1.18 \text{ V}$$

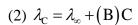
 $2(Mn^{3+} + e^{-} \rightarrow Mn^{2+}); E^{\circ} = +1.51 \text{ V}$

The E°for $3Mn^{2+} \rightarrow Mn + 2Mn^{3+}$ will be:

- (1) -0.33 V; the reaction will occur
- (2) -2.69 V; the reaction will not occur
- (3) -2.69 V; the reaction will occur
- (4) -0.33V; the reaction will not occur
- 65. For complete combustion of ethanol, $C_2H_5OH(1)+3O_2(g) \rightarrow 2CO_2(g)+3H_2O(1)$, the bomb calorimeter, is 1364.47 kJ mol⁻¹ at 25°C. Assuming ideality the Enthalpy of combustion, Δ_c H, for the reaction will be:

$$(R = 8.314 \, kJ \, mol^{-1})$$

- $(1) \ -1350.50 \, kJ \, mol^{-1}$
- $(2) \ -1366.95 \, kJ \, mol^{-1}$
- $(3) -1361.95 \text{ kJ mol}^{-1}$
- $(4) -1460.50 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$


- 66. For the estimation of nitrogen, $1.4\,g$ of an organic compound was digested by Kjeldahl method and the evolved ammonia was absorbed in $60\,\text{mL}$ of $\frac{M}{10}$ sulphuric acid. The unreacted acid required $20\,\text{mL}$ of $\frac{M}{10}$ sodium hydroxide for complete neutralization. The percentage of nitrogen in compound is:
 - (1) 5%
 - (2) 6%
 - (3) 10%
 - (4) 3%
- 67. The major organic compound formed by the reaction of 1,1,1 trichloroethane with silver power is:
 - (1) 2-Butene
 - (2) Acetylene
 - (3) Ethene
 - (4) 2 Butene
- 68. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is, 1:4. The ratio of number of their molecule is:
 - (1) 3:16
 - (2) 1:4
 - (3) 7:32
 - (4) 1:8

- 69. The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is :
 - (1) Cr
 - (2) Ag
 - (3) Ca
 - (4) Cu
- 70. The equivalent conductance of NaCl at concentration C and at infinite dilution are ${}^{\lambda}C$ and ${}^{\lambda}\infty$, respectively. The correct relationship between ${}^{\lambda}C$ and ${}^{\lambda}\infty$ is given as:

(where the constant B is positive)

$$(1) \ \lambda_{\rm C} = \lambda_{\infty} + (B) \sqrt{C}$$

(3)
$$\lambda_{\rm C} = \lambda_{\infty} - (B)C$$

$$(4) \ \lambda_{\rm C} = \lambda_{\infty} - (B) \sqrt{C}$$

71. The correct set of four quantum numbers for the valence electrons of rubidium atom (Z=37) is:

(1) 5,0,1,+
$$\frac{1}{2}$$

(2) 5,0,0,+
$$\frac{1}{2}$$

(3) 5, 1, 0,
$$+\frac{1}{2}$$

$$(4)$$
 5, 1, 1, $+\frac{1}{2}$

- 72. Consider separate solutions of 0.500M $C_2H_5OH(aq), 0.100MMg_3(PO_4)_2(aq), 0.250MKBr(aq) and <math>0.125MNa_3PO_4(aq)$ at $25^{\circ}C$. Which statement is **true** about these solution, assuming all salts to be strong electrolytes?
 - (1) $0.500M C_2H_5OH(aq)$ has the highest osmotic pressure.
 - (2) They all have the same osmotic pressure.
 - (3) $0.100 \,\mathrm{MMg_3}(\mathrm{PO_4})_2(\mathrm{aq})$ has the highest osmotic pressure.
 - (4) $0.125 \,\mathrm{M\,Na_3PO_4}(\mathrm{aq})$ has the highest osmotic pressure.
- 73. The most suitable reagent for the conversion of $R CH_2 OH \rightarrow R CHO$
 - (1) PCC (Pyridinium Chlorochromate)
 - (2) KMnO₄
 - $(3) K_2Cr_2O_7$
 - (4) CrO₃
- 74. CsCl crystallises in body centred cubis lattice. If 'a' is its edge length then which of the following expressions is correct?

(1)
$$r_{Cs^+} + r_{Cl^-} = \sqrt{3}a$$

(2)
$$r_{Cs^+} + r_{Cl^-} = 3a$$

(3)
$$r_{Cs^+} + r_{Cl^-} = \frac{3a}{2}$$

(4)
$$r_{Cs^+} + r_{Cl^-} = \frac{\sqrt{3}}{2}a$$

75. In which of the following reactions H_2O_2 acts as a reducing agent ?

(a)
$$H_2O_2 + 2H^+ - 2e^- \rightarrow 2H_2O$$

(b)
$$H_2O_2 - 2e^- \rightarrow O_2 + 2H$$

(c)
$$H_2O_2 + 2e^- \rightarrow 2HO$$

(d)
$$H_2O_2 + 2HO^- - 2e^- \rightarrow O_2 + 2H_2O$$

- (1) (b), (d)
- (2) (a), (b)
- (3) (c), (d)
- (4) (a),(c)
- 76. For which of the following molecule significant $\mu \neq 0$?

- (1) (c) and (d)
- (2) only (a)
- (3) (a) and (b)
- (4) only (c)
- 77. On heating an aliphatic primary amine with chlooroform and ethanolic potassium hydroxide, the organic compound formed is:
 - (A) an alkyl isocyanide
 - (B) an alkanol
 - (C) an alkanediol
 - (D) an alkyl cyanid
- 78. In $S_N 2$ reactions, the correct order of reactivity for the following compounds $CH_3Cl > CH_3CHCl$, $(CH_3)_2$ CHCl and $(CH_3)_3$ CCl is
 - (1) $(CH_3)_2CHCl > CH_3CH_2Cl > CH_3Cl > (CH_3)_3CCl$
 - (2) $CH_3Cl > (CH_3)_2 CHCl_3 > CH_3CH_2Cl > (CH_3)_3 CCl$
 - (3) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2 CHCl > (CH_3)_3 CCl$
 - $(4) \ \text{CH}_{3}\text{CH}_{2}\text{Cl} > \text{CH}_{3}\text{Cl} > \left(\text{CH}_{3}\right)_{2} \text{CHCl} > \left(\text{CH}_{3}\right)_{3} \text{CCl}$

79. The octahedral complex of a metal ion M^{3+} with four monodentate ligands L_1, L_2, L_3 and L_4 absorb wavelengths in the region of red, green, yellow and blue, respectively. The increasing order of ligand strength of the four ligands is

(1)
$$L_1 < L_2 < L_4 < L_3$$

(2)
$$L_4 < L_3 < L_2 < L_1$$

(3)
$$L_1 < L_3 < L_2 < L_4$$

$$(4) L_3 < L_2 < L_4 < L_1$$

80. The equation which is balanced and represents the correct product(s) is:

(1)
$$\operatorname{CuSO}_4 + 4\operatorname{KCN} \to \operatorname{K}_2\left[\operatorname{Cu}\left(\operatorname{CN}\right)_4\right] + \operatorname{K}_2\operatorname{SO}_4$$

(2)
$$\text{Li}_2\text{O} + 2\text{KCl} \rightarrow 2\text{LiCl} + \text{K}_2\text{O}$$

(3)
$$\left[\text{CoCl} \left(\text{NH}_3 \right)_5 \right]^+ + 5\text{H}^+ \rightarrow \text{Co}^2 + 5\text{NH}_4^+ + \text{Cl}^-$$

(4)
$$\left[Mg(H_2O)_6 \right]^2 + \left(EDTA \right)^{4-} \xrightarrow{\text{excess NaOH}} \left[Mg(EDTA) \right]^2 + 6H_2O$$

81. In the reaction, $CH_3COOH \xrightarrow{LiAlH_4} A \xrightarrow{PCl_5} B \xrightarrow{Alc.KOH}$,

The product C is:

- (1) Acetyl chloride
- (2) Acetaldehyde
- (3) Acetylene
- (4) Ethylene

- 82. The Correct statement for the molecule, CsI_3 , is:
 - (1) it contains Cs^+, I^- and I_2 lattice molecule.
 - (2) it is a covalent molecule.
 - (3) it contains Cs^+ , I^- and I_3^- ions.
 - (4) it contains Cs⁺, I⁻ and I⁻ions.
- 83. For the reaction $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{2(g)}$, if $K_P = K_C (RT)^x$ where the symbols have usual meaning then the value of x is: (assuming ideality)
 - (1) 1
 - (2) -1
 - $(3) -\frac{1}{2}$
 - (4) $\frac{1}{2}$
- 84. For the non-stoichiometre reaction $2A + B \rightarrow C + D$, the following kinetic data were obtained in three separate experiments, all at 298 K.

Initial Concentration (A)	Initial Concentration (B)	Initial rate of formation of $C(mol L^-S^-)$
0.1 <i>M</i>	0.1 <i>M</i>	1.2×10 ⁻³
0.1 <i>M</i>	0.2 <i>M</i>	1.2×10 ⁻³
0.2 <i>M</i>	0.1 <i>M</i>	2.4×10^{-3}

The rate law for the formation of C is:

$$(1) \frac{dc}{dt} = k [A]$$

$$(2) \frac{dc}{dt} = k[A][B]$$

$$(3) \frac{dc}{dt} = k [A]^2 [B]$$

$$(4) \frac{dc}{dt} = k [A] [B]^2$$

- 85. Resistance of 0.2M solution of an electrolyte is 50Ω . The specific conductance of the solution is $1.4 \, S \, m^{-1}$. The resistance of 0.5M solution of the same electrolyte is 280Ω . The molar conductivity of 0.5M solution of the electrolyte in $S \, m^2 \, mol^{-1}$ is:
 - (1) 5×10^2
 - $(2) 5 \times 10^{-4}$
 - $(3) 5 \times 10^{-3}$
 - $(4) 5 \times 10^3$
- 86. Among the following oxoacids, the correct decreasing order of acid strength is:
 - (1) HClO₂ > HClO₄ > HClO₃ > HOCl
 - (2) HOCl > HClO₂ > HClO₃ > HOCl₄
 - (3) $HClO_4 > HOCl > HClO_2 > HClO_3$
 - (4) $HClO_4 > HClO_3 > HClO_2 > HOCl$
- 87. Which one of the following bases is not present in DNA?
 - (1) Thymine
 - (2) Quinoline
 - (3) Adenine
 - (4) Cytosine

- 88. Considering the basic strength of amines in aqueous solution, which one has the smallest pKb value?
 - (1) $C_6H_5NH_2$
 - (2) $(CH_3)_2$ NH
 - (3) CH₃NH₂
 - (4) $(CH_3)_3 N$
- 89. If *Z* is a compressibility factor van der Waals equation at low pressure can be written as:

$$(1) Z = 1 + \frac{Pb}{RT}$$

$$(2) Z = 1 + \frac{RT}{Pb}$$

$$(3) Z = 1 - \frac{a}{VRT}$$

$$(4) Z = 1 - \frac{Pb}{RT}$$

90. Which series of reaction correctly represents chemical relation related to iron and its compound?

$$(1) \begin{array}{c} Fe \xrightarrow{O_{2,heat}} Fe_3 O_4 \xrightarrow{CO,600^{\circ}C} \\ Fe O \xrightarrow{CO,700^{\circ}C} Fe \end{array}$$

(2)
$$Fe^{\frac{diH_2SO_4}{}} FeSO_4 \xrightarrow{H_2SO_4,O_2} Fe_2(SO_4)_3 \xrightarrow{heat} Fe$$

(3)
$$Fe^{\frac{O_2, heat}{}} FeO^{\frac{dilH_2SO_4}{}} \rightarrow FeSO_4^{\frac{heat}{}} Fe$$

$$(4) \begin{array}{c} Fe \xrightarrow{Cl_2, heat} FeCl_3 \xrightarrow{heat, air} \\ Fe_2Cl_2 \xrightarrow{Zn} Fe \end{array}$$