

AIEE-2002

MATHEMATICS

- **1.** If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha 3$ and $\beta^2 = 5\beta 3$ then the equation having α/β and β/α as its roots is
 - (a) $3x^2 19x + 3 = 0$
 - (b) $3x^2 19x 3 = 0$
 - (c) $3x^2 19x 3 = 0$
 - (d) $x^2 5x + 3 = 0$

2. If
$$y = (x + \sqrt{1 + x^2})^2$$
, then $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx}$ is
(a) n^2y
(b) $-n^2y$
(c) $-y$

(d) $2x^2y$

3. If 1, $\log_9(3^{1-x}+2)$, $\log_3(4\cdot 3^x-1)$ are in *A.P.* then *x* equals

- (a) $\log_3 4$
- (b) $1 + \log_3 4$
- (c) $1 \log_4 3$
- (d) $\log_4 3$

- **4.** A problem in mathematics is given to three students *A*, *B*, *C* and their respective probability of solving the problem is $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is solved is
- (a) $\frac{3}{4}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$ 5. The period of $\sin^2 \theta$ is (a) π^2 (b) π (c) 2π (d) $\pi/2$
- **6.** *l*, *m*, *n* are the p^{th} , q^{th} and r^{th} term of a *G*.*P*. all positive, then $\begin{vmatrix} \log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1 \end{vmatrix}$ equals
 - (a) –1
 - (b) 2
 - (c) 1
 - (d) 0

7.
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{\sqrt{2}x}$$
 is

- (a) 1
- (b) –1
- (c) zero
- (d) does not exist
- **8.** A triangle with vertices (4,0), (-1,-1), (3,5) is
 - (a) isosceles and right angled
 - (b) isosceles but not right angled
 - (c) right angled but not isosceles
 - (d) neither right angled nor isosceles
- **9.** In a class of 100 students there are 70 boys whose average marks in a subject are 75. If the average marks of the complete class is 72, then what is the average of the girls?
 - (a) 73
 - (b) 65
 - (c) 68
 - (d) 74

10.
$$\cot^{-1}\left(\sqrt{\cos\alpha}\right) = \tan^{-1}\left(\sqrt{\cos\alpha}\right) = x$$
, then $\sin x =$

(a)
$$\tan^2\left(\frac{\alpha}{2}\right)$$

(b)
$$\cot^2\left(\frac{\alpha}{2}\right)$$

- (c) $\tan \alpha$
- (d) $\cot\left(\frac{\alpha}{2}\right)$

11. The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3} = 4\frac{d^3y}{dx^3}$ are

(a) $\left(1, \frac{2}{3}\right)$ (b) (3,1)(c) (3,3)(d) (1,2)

12. A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{4}$ is

- (a) x y + z = 1
- (b) x + y + z = 5
- (c) x + 2y z = 1
- (d) 2x y + z = 5

13. The solution of the equation
$$\frac{d^2 y}{dx^2} = e^{-2x}$$

(a)
$$\frac{e^{-2x}}{4}$$

(b) $\frac{e^{-2x}}{4} + cx + d$
(c) $\frac{1}{4}e^{-2x} + cx^2 + d$
(d) $\frac{1}{4}e^{-4x} + cx + d$
14. $\lim_{x \to \infty} \frac{x^2 + 5x + 3^{\frac{1}{x}}}{x^2 + x + 3}$
(a) e^4
(b) e^2
(c) e^3
(d) 1

15. The domain of $\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$ is

- (a) [1,9]
- (b) [-1,9]
- (c) [-9,1]
- (d) [-9,-1]

- **16.** The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6}$ +K K ∞ is
 - (a) 1
 - (b) 2
 - (c) 3/2
 - (d) 4
- 17. Fifth term of a GP is 2, then the product of its 9 terms is

(d) 18

19.
$$l_2 = \int_{0}^{\pi/4} \tan^n x \, dx$$
 then equals $\lim_{n \to \infty} n [l_n + l_{n-2}]$
(a) $\frac{1}{2}$
(b) 1

(d) zero

20.
$$\int_{0}^{\sqrt{2}} [X^2] dx$$
 is
(a) $2 - \sqrt{2}$
(b) $2 + \sqrt{2}$
(c) $\sqrt{2} - 1$
(d) $\sqrt{2} - 2$

21.
$$\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx$$
 is
(a) $\frac{\pi^2}{4}$
(b) π^2
(c) zero
 $\underline{\underline{\pi}}$

(d) 2

22. Let
$$f(x) = 4$$
 and $f'(x) = 4$. Then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ is given by

- (a) 2
- (b) –2
- (c) -4
- (d) 3
- **23.** z and w are two non zero complex no. s such that |z| = |w| and $Arg \ z + Arg \ w = \pi \ z$ equals
 - (a) \overline{W} (b) $-\overline{W}$ (c) w(d) -w
- **24.** If |z-4| < |z-2|, its solution is given by
 - (a) $\operatorname{Re}(z) > 0$
 - (b) $\operatorname{Re}(z) < 0$
 - (c) Re(z) > 3
 - (d) $\operatorname{Re}(z) > 2$

- **25.** The locus of the centre of a circle which touches the circle $|z z_1| = a$ and $|z z_2| = b$ externally (z, z_1 and z_2 are complex numbers) will be
 - (a) an ellipse
 - (b) a hyperbola
 - (c) a circle
 - (d) none of these
- **26.** Sum of infinite number of terms of GP is 20 and sum of their square is 100. The common ratio of GP is
 - (a) 5
 (b) 3/5
 (c) 8/5
 (d) 1/5
- **27.** $1^3 2^3 + 3^3 4^3 + K + 9^3 =$
 - (a) 425
 - (b) -425
 - (c) 475
 - (d) -475

- **28.** Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then
 - (a) a+b+4=0
 - (b) a+b-4=0
 - (c) a b 4 = 0
 - (d) a b + 4 = 0
- **29.** Product of real roots of the equation $t^2x^2 + |x| + 9 = 0$
 - (a) is always positive
 - (b) is always negative
 - (c) does not exist
 - (d) none of these
- **30.** If p and q are the roots of the equation $x^2 + px + q = 0$, then
 - (a) p = 1, q = -2
 - (b) p = 0, q = 1
 - (c) p = -2, q = 0
 - (d) p = -2, q = 1

- **31.** If a, b, c are distinct +ve real numbers and $a^2 + b^2 + c^2 = 1$ then ab + bc + ca is
 - (a) less than 1
 - (b) equal to 1
 - (c) greater than 1
 - (d) any real no.
- **32.** Total number of four digit odd numbers that can be formed using 0, 1, 2, 3, 5, 7 (using repetition allowed) are

(a) 216	
(b) 375	
(c) 400	
(d) 720	

- **33.** Number greater than 1000 but less than 4000 is formed using the digits 0, 1, 2, 3, 4 (repetition allowed) is
 - (a) 125
 - (b) 105
 - (c) 375
 - (d) 625

- **34.** Five digit number divisible by 3 is formed using 0, 1, 2, 3, 4, 6 and 7 without repetition. Total number of such numbers are
 - (a) 312
 - (b) 3125
 - (c) 120
 - (d) 216
- **35.** The sum of integers from 1 to 100 that are divisible by 2 or 5 is

(a) 3000	
(b) 3050	
(c) 3600	
(d) 3250	

- **36.** The coefficients of x^p and x^p in the expansion of $(1+x)^{p+q}$ are
 - (a) equal
 - (b) equal with opposite signs
 - (c) reciprocals of each other
 - (d) none of these

- **37.** If the sum of the coefficients in the expansion of $(a+b)^n$ is 4096 then the greatest coefficient in the expansion is
 - (a) 1594
 - (b) 792
 - (c) 924
 - (d) 2924
- **38.** The positive integer just greater than $(1+0.0001)^{10000}$ is

(a) 4	
(b) 5	
(c) 2	
(d) 3	

- **39.** *r* and *n* are positive integers r > 1, n > 2 and coefficient of $(r+2)^{\text{th}}$ term and $3r^{\text{th}}$ term in the expansion of $(1+x)^{2n}$ are equal, then *n* equals
 - (a) 3*r*
 - (b) 3r+1
 - (c) 2*r*
 - (d) 2r+1

	a	b	ax+b
40. If $a > 0$ discriminant of $ax^2 + 2bx + c$ is -ve, then	b	С	bx+c is
	ax+b	bx+c	0

(a) +ve

(b)
$$\left(ac-b^2\right)\left(ax^2+2bx+c\right)$$

- (c) -ve
- (d) 0

41. If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + K} K}}$ having *n* radical signs then by methods of mathematical induction which is true

- (a) $a_n > 7 \forall n \ge 1$
- (b) $a_n > 7 \forall n \ge 1$
- (c) $a_n < 4 \forall n \ge 1$
- (d) $a_n < 3 \forall n \ge 1$
- **42.** The sides of a triangle are 3x+4y, 4x+37 and 5x+57 where x, y > 0 then the triangle is
 - (a) right angled
 - (b) obtuse angled
 - (c) equilateral
 - (d) none of these

- **43.** Locus of mid point of the portion between the axes of $x \cos \alpha + y \sin \alpha = p$ where p is constant is
 - (a) $x^2 + y^2 = \frac{4}{p^2}$

(b)
$$x^2 + y^2 = 4p^2$$

- (c) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$
- (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$
- 44. If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the y-axis then
 - (a) $2fgh = bg^2 + ch^2$
 - (b) $bg^2 \neq ch^2$
 - (c) abc = 2fgh
 - (d) none of these
- **45.** The point of lines represented by $3ax^2 + 5xy + (a^2 2)y^2 = 0$ and perpendicular to each other for
 - (a) two values of a
 - (b) ∀*a*
 - (c) for one value of a
 - (d) for no values of a

- **46.** If the chord y = mx + 1 of the circle $x^2 + y^2 = 1$ subtends an angle of measure 45° at the major segment of the circle then value of *m* is
 - (a) $2 \pm \sqrt{2}$
 - (b) $-2 \pm \sqrt{2}$
 - (c) $-1 \pm \sqrt{2}$
 - (d) none of these
- 47. The centres of a set of circles, each of radius 3, lie on the circle $x^2 + y^2 = 25$. The locus of any point in the set is
 - (a) $4 \le x^2 + y^2 \le 64$
 - (b) $x^2 + y^2 \le 25$
 - (c) $x^2 + y^2 \ge 25$
 - (d) $3 \le x^2 + y^2 \le 9$

48. The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $x^2 + y^2 = 9$ is

- (a) $\left(\frac{1}{2}, \frac{1}{2}\right)$
- (b) $\left(\frac{1}{2}, -\sqrt{2}\right)$
- (c) $\left(\frac{3}{2}, \frac{1}{2}\right)$
- $(d)\left(\frac{1}{2},\frac{3}{2}\right)$

- **49.** The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length 3a is
 - (a) $x^2 + y^2 = 9a^2$
 - (b) $x^2 + y^2 = 16a^2$
 - (c) $x^2 + y^2 = 4a^2$
 - (d) $x^2 + y^2 = a^2$

50. Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are

- (a) $x = \pm (y + 2a)$
- (b) $y = \pm (x + 2a)$
- (c) $x = \pm (y+a)$
- (d) $y = \pm (x+a)$
- **51.** In a triangle with sides *a*, *b*, *c*, $r_1 > r_2 > r_3$ (which are the ex-radii) then
 - (a) a > b > c
 - (b) a < b < c
 - (c) a > b and b < c
 - (d) a < b and b > c

- **52.** The number of solution of $\tan x + \sec x = 2\cos x$ in $(0, 2\pi)$ is
 - (a) 2
 - (b) 3
 - (c) 0
 - (d) 1

53. Which one is not periodic

- (a) $|\sin 3x| + \sin^2 x$
- (b) $\cos\sqrt{x} + \cos^2 x$
- (c) $\cos 4x + \tan^2 x$
- (d) $\cos 2x + \sin x$

54.
$$\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + K + n^p}{n^{p+1}}$$
 is

(a)
$$\frac{1}{p+1}$$

(b)
$$\frac{1}{1-p}$$

(c)
$$\frac{1}{p} - \frac{1}{p-1}$$

(d)
$$\frac{1}{p+2}$$

55. $\lim_{n \to 0} \frac{\log x^n - [x]}{[X]}, n \in N ([x] \text{ denotes greatest integer less than or equal to } x)$

- (a) has value -1
- (b) has value 0
- (c) has value 1
- (d) does not exist

56. If
$$f(1)=1, f'(1)=2$$
, then $\lim_{x \to 1} \frac{\sqrt{f(x)-1}}{\sqrt{x}-1}$ is
(a) 2
(b) 4
(c) 1
(d) $1/2$

57. f is defined in [-5,5] as f(x) = x if x is rational and = -x is irrational. Then

- (a) f(x) is continuous at every x, except x = 0
- (b) f(x) is discontinuous at every x, except x = 0
- (c) f(x) is continuous everywhere
- (d) f(x) is discontinuous everywhere

58. f(x) and g(x) are two differentiable functions on [0,2] such that f''(x) - g''(x) = 0

$$f'(1) = 2g'(1) = 4f(2) = 3g(2) = 9$$
 then $f(x) - g(x)$ at $x = 3/2$ is

- (a) 0
- (b) 2
- (c) 10
- (d) 5

59. If f(x+y) = f(x). $f(y) \forall x.y$ and f(5) = 2, f'(0) = 3 then f'(5) is

- (a) 0
- (b) 1
- (c) 6
- (d) 2

60. The maximum distance from origin of a point on the curve $x = a \sin t - b \sin \left(\frac{at}{b}\right)$

$$y = a\cos t - b\cos\left(\frac{at}{b}\right)$$
, both $a, b > 0$ is

- (a) a b
- (b) *a*+*b*
- (c) $\sqrt{a^2 + b^2}$
- (d) $\sqrt{a^2 b^2}$

61. If $2a+3b+6c=0(a,b,c \in R)$ then the quadratic equation $ax^2+bx+c=0$ has

- (a) at least one root in [0,1]
- (b) at least one root in [2,3]
- (c) at least one root in [4,5]
- (d) none of these

62. If y = f(x) makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area of 3/4 square unit with the axes then $\int_{-\infty}^{2} xf'(x)ds$ is

- (a) 3/2
- (b) 1
- (c) 5/4
- (d) -3/4

63. The area bounded by the curves $y = \ln x$, $y = \ln |x|$, $y = |\ln x|$, $y = |\ln x|$ and $y = |\ln ||x|$ is

- (a) 4 sq . units
- (b) 6 sq . units
- (c) 10 sq . units
- (d) none of these

64. If |a| = 4, |b| = 2 and the angle between a and b is $\pi/6$ than $(a \times b)^2 = 2$ is equal to

- (a) 48
- (b) 16
- (c) a^r
- (d) none of these

65. If a, b, c are vectors such that $\begin{bmatrix} r & r & r \\ a & b & c \end{bmatrix} = 4$ then $\begin{bmatrix} r & r & r & r & r \\ a \times b \times b \times c & c \times a \end{bmatrix} =$ (a) 16 (b) 64 (c) 4 (d) 8

66. If a, b, c are vectors such that a+b+c=0 and |a|=7, |b|=5, |c|=3 then angle between vector b and c is

- (a) 60
- (b) 30°
- (c) 45°
- (d) 90°

- 67. If |a| = 5, |b| = 4, |c| = 3 thus what will be the value of |a.b+b.c+c.a|, given that a + b + c = 0
 - (a) 25
 - (b) 50
 - (c) -5
 - (d) -50
- **68.** $3\lambda c + 2\mu \left(a \times b \right) = 0$ then
 - (a) $3\lambda + 2\mu = 0$
 - (b) $3\lambda = 2\mu$
 - (c) $\lambda = \mu$
 - (d) $\lambda + \mu = 0$
- **69.** $\stackrel{r}{a} = 3\hat{i} 5\hat{j}$ and $\stackrel{r}{b} = 6\hat{i} + 3\hat{j}$ are two vectors and $\stackrel{r}{c}$ is a vector such that $\stackrel{r}{c} = \stackrel{r}{a \times b}$ then $|\stackrel{r}{a}|:|\stackrel{r}{b}|:|\stackrel{r}{c}|$
 - (a) $\sqrt{34}: \sqrt{45}: \sqrt{39}$
 - (b) $\sqrt{34}: \sqrt{45}: 39$
 - (c) 34:39:45
 - (d) 39:35:34

- **70.** If $a \times b = b \times c = c \times a$ than $a + b + c = b \times c = c \times a$
 - (a) *abc*
 - (b) -1
 - (c) 0
 - (d) 2

71. A and B are events such that $P(A \cup B) = 3/4$, $P(A \cup B) = 1/4$, $P(\overline{A}) = 2/3$ than

- **72.** A die is tossed 5 times. Getting an odd number is considered a success. Then the variance of distribution of success is
 - (a) 8/3
 - (b) 3/8
 - (c) 4/5
 - (d) 5/4

- **73.** The *d.r.* of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle $\pi/4$ with plane x + y = 3 are
 - (a) $1\sqrt{2}, 1$
 - (b) 1,1, $\sqrt{2}$
 - (c) 1,1,2
 - (d) $\sqrt{2,1,1}$
- 74. The sum of two forces is 18 N and resultant whose direction is at right angles to the smaller force is 12 N. The magnitude of the two forces are
 - (a) 13,5
 (b) 12,6
 (c) 14,4
 (d) 11,7
- **75.** A bead of weight w can slide on smooth circular wire in a vertical plane. The bead is attached by a light thread to the highest point of the wire and in equilibrium, the thread is taut and make an angle θ with the vertical then tension of the thread and reaction of the wire on the bead are
 - (a) $T = w\cos\theta$ $R = w\tan\theta$
 - (b) $T = 2w\cos\theta$ R = w
 - (c) $T = w \quad R = w \sin \theta$
 - (d) $T = w \sin \theta$ $R = w \cot \theta$