

IITJEE-2006

Mathematics

[Time allowed: 2 hours]

Note: Question number 1 to 12 carries (3, -1) *marks* each, 13 to 20 carries (5, -1) *marks* each, 21 to 32 carries (5, -2) *marks* each and 33 to 40 carries (6, 0) *marks* each.

Section – A (Single Option Correct)

1. For
$$x > 0$$
, $\lim_{x \to 0} \left((\sin x)^{1/x} + (1/x)^{\sin x} \right)$ is

- (A) 0
- (B) –1
- (C) 1
- (D) 2
- 2. $\int \frac{x^2 1}{x^3 \sqrt{2x^4 2x^2 + 1}} dx$ is equal to

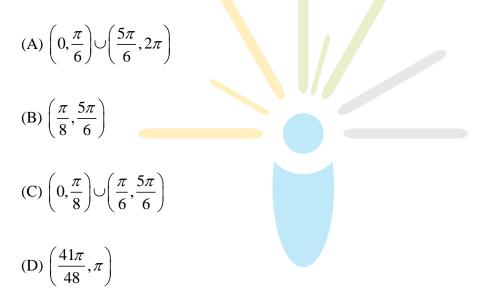
(A)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{x^2} + c$$

(B)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{x^3} + c$$

(C)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{x} + c$$

(D)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{2x^2} + c$$

- 3. Given an isosceles triangle, whose one angle is 120° and radius of its incircle = $\sqrt{3}$. Then the area of the triangle in sq. units is
 - (A) $7 + 12\sqrt{3}$
 - (B) $12 7\sqrt{3}$
 - (C) $12 + 7\sqrt{3}$
 - (D) 4π
 - 4. If $0 < \theta < 2\pi$, then the intervals of values of θ for which $2\sin^2 \theta 5\sin \theta 2 > 0$, is



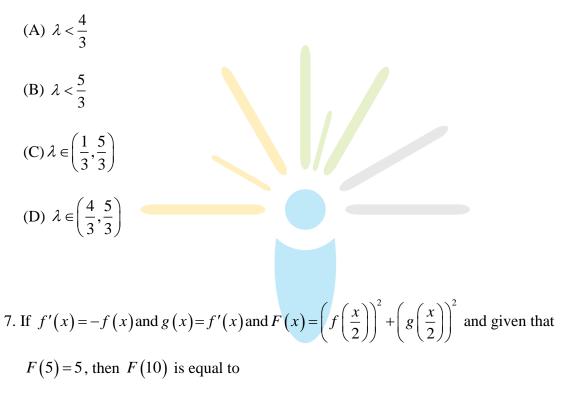
5. If $w = \alpha + i\beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w - \overline{w}z}{1 - z}\right)$ is purely real, then the set of values of z is

- (A) $\{z: |z|=1\}$
- (B) $\{z: z = \overline{z}\}$

(C) $\{z: z \neq 1\}$

(D)
$$\{z: |z| = 1, z \neq 1\}$$

6. Let a, b, c be the sides of a triangle. No two of them are equal and $\lambda \in R$. If the roots of the equation $x^2 + 2(a+b+c)x + 3\lambda(ab+bc+ca) = 0$ are real, then



- (A) 5
- (B) 10
- (C) 0
- (D) 15

- 8. If r, s, t are prime numbers and p,q are the positive integers such that the *LCM* of p,q is $r^2t^4s^2$, then the number of ordered pair (p,q) is
 - (A) 252
 - (B) 254
 - (C) 225
 - (D) 224

9. Let
$$\theta \in \left(0, \frac{\pi}{4}\right)$$
 and $t_1 = (\tan \theta)^{\tan \theta}$, $t_2 = (\tan \theta)^{\cot \theta}$, $t_3 = (\cot \theta)^{\tan \theta}$ and $t_4 = (\cot \theta)^{\tan \theta}$, then
(A) $t_1 > t_2 > t_3 > t_4$
(B) $t_4 > t_3 > t_1 > t_2$
(C) $t_3 > t_1 > t_2 > t_4$
(D) $t_2 > t_3 > t_1 > t_4$

- 10. The axis of a parabola is along the line y = x and the distance of its vertex from origin is $\sqrt{2}$ and that from its focus is $2\sqrt{2}$. If vertex and focus both lie in the first quadrant, then the equation of the parabola is
 - (A) $(x+y)^2 = (x-y-2)$ (B) $(x-y)^2 = (x+y-2)$ (C) $(x-y)^2 = 4(x+y-2)$ (D) $(x-y)^2 = 8(x+y-2)$

11. A plane passes through (1, -2, 1) and is perpendicular to two planes

2x-2y+z=0 and x-y+2z=4. The distance of the plane from the point (1,2,2) is

- (A) 0
- **(B)** 1
- (C) $\sqrt{2}$
- (D) 2√2
- 12. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ A vector in the plane of \vec{a} and \vec{b} whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is (A) $4\hat{i} - \hat{j} + 4\hat{k}$ (B) $3\hat{i} + \hat{j} - 3\hat{k}$
 - (C) $2\hat{i} + \hat{j} 2\hat{k}$
 - (D) $4\hat{i} + \hat{j} 4\hat{k}$

Section – B (May have more than one option correct)

13. The equations of the common tangents to the parabola $y = x^2$ and $y = -(x-2)^2$ is/are

- (A) y = 4(x-1)
- (B) y = 0
- (C) y = -4(x-1)
- (D) y = -30x 50

- 14. If $f(x) = \min\{1, x^2, x^3\}$, then
 - (A) f(x) is continuous $\forall x \in R$
 - (B) $f(x) > 0, \forall x > 1$
 - (C) f(x) is not differentiable but continuous $\forall x \in R$
 - (D) f(x) is not differentiable for two values of x
- 15. A tangent drawn to the curve y = f(x) at P(x, y) cuts the x-axis and y-axis at A and B respectively such that BP: AP = 3:1, given that f(1) = 1, then
 - (A) equation of curve is $x\frac{dy}{dx} 3y = 0$
 - (B) normal at (1,1) is x + 3y = 4
 - (C) curve passes through (2, 1/8)
 - (D) equation of curve is $x \frac{dy}{dx} + 3y = 0$
- 16. If a hyperbola passes through the focus of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and its transverse and conjugate axes coincide with the major and minor axes of the ellipse, and the product of eccentricities is 1, then

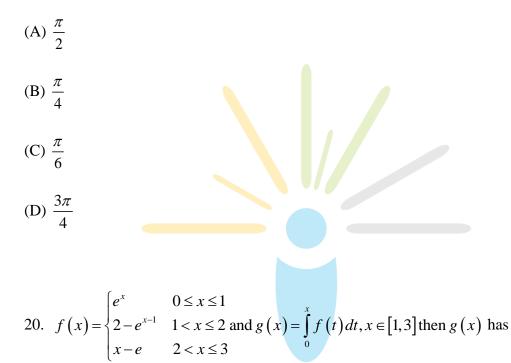
(A) the equation of hyperbola is
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

(B) the equation of hyperbola is
$$\frac{x^2}{9} - \frac{y^2}{25} = 1$$

- (C) focus of hyperbola is (5,0)
- (D) focus of hyperbola is $(5\sqrt{3},0)$
- 17. Internal bisector of $\angle A$ of triangle *ABC* meets side *BC* at *D*. A line drawn through *D* perpendicular to *AD* intersects the side *AC* at *E* and the side *AB* at F. If *a*,*b*,*c* represent sides of $\triangle ABC$ then
 - (A) AE is HM of b and c
 - (B) $AD = \frac{2bc}{b+c}\cos\frac{A}{2}$
 - (C) $EF = \frac{4bc}{b+c}\sin\frac{A}{2}$
 - (D) the triangle AEF is isosceles
- 18. f(x) is cubic polynomial which has local maximum at
 - x = -1. If f(2) = 18, f(1) = -1 and f'(x) has local minima at x = 0, then
- (A) the distance between (-1,2) and (a, f(a)), where x = a is the point of local minima is $2\sqrt{5}$
 - (B) f(x) is increasing for $x \in [1, 2\sqrt{5}]$
 - (C) f(x) has local minima at x=1

(D) the value of f(0) = 5

19. Let \overline{A} be vector parallel to line of intersection of planes P_1 and P_2 through origin. P_1 is parallel to the vectors $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$, then the angle between vectors \overline{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is



(A) local maxima at $x = 1 + \ln 2$ and local minima at x = e

(B) local maxima at x = 1 and local minima at x = 2

(C) no local maxima

(D) no local minima

Section - C

Comprehension I

There are n urns each containing n+1 balls such that the ith urn contains i white balls and (n+1-i) red balls. Let u_i be the event of selecting ith urn, i = 1, 2, 2, ..., n and w denotes the event of getting a white ball.

21. If $p(u_i) \propto i$, where i = 1, 2, 3, ..., n, then $\lim_{n \to \infty} P(w)$ is equal to

22. If $P(u_i) = c$ where c is a constant then $P(u_n/w)$ is equal to

(A)
$$\frac{2}{n+1}$$

(B) $\frac{1}{n+1}$
(C) $\frac{n}{n+1}$
(D) $\frac{1}{2}$

- 23. If n is even and E denotes the event of choosing even numbered urn $\left(P(u_i) = \frac{1}{n}\right)$, then the value of P(w/E) is
- (A) $\frac{n+2}{2n+1}$ (B) $\frac{n+2}{2(n+1)}$ (C) $\frac{n}{n+1}$ (D) $\frac{1}{n+1}$ 24. $\int_{0}^{\pi/2} \sin x \, dx$ is equal to (A) $\frac{\pi}{8} (1+\sqrt{2})$ (B) $\frac{\pi}{4} (1+\sqrt{2})$ (C) $\frac{\pi}{8\sqrt{2}}$

(D)
$$\frac{\pi}{4\sqrt{2}}$$

25. If $f'(x) < 0 \forall x \in (a,b)$ and c is a point such that a < c < b, and (c, f(c)) is the point lying on the curve for which F(c) is maximum, then f'(c) is equal to

(A)
$$\frac{f(b)-f(a)}{b-a}$$

(B) $\frac{2(f(b)-f(a))}{b-a}$
(C) $\frac{2f(b)-f(a)}{2b-a}$
(D) 0

Comprehension III

Let ABCD be a square of side length 2 units. C2 is the circle through vertices A, B, C, D and C1 is the circle touching all the sides *of the square ABCD*. *L is a line through A*.

26. If P is a point on C_1 and Q in another point on C_2 , then $\frac{PA^2 + PB^2 + PC^2 + PD^2}{QA^2 + QB^2 + QC^2 + QD^2}$ is

equal to

- (A) 0.75
- (B) 1.25
- (C) 1
- (D) 0.5

- 27. A circle touches the line L and the circle C_1 externally such that both the circles are on the same side of the line, then the locus of centre of the circle is
 - (A) ellipse
 - (B) hyperbola
 - (C) parabola
 - (D) parts of straight line
- 28. A line *M* through *A* is drawn parallel to *BD*. Point *S* moves such that its distances from the line *BD* and the vertex *A* are equal. If locus of *S* cuts *M* at T_2 and T_3 and *AC* at T_1 , then area of $\Delta T_1 T_2 T_3$ is

(A)
$$\frac{1}{2}$$
 sq. units
(B) $\frac{2}{3}$ sq. units
(C) 1 sq. units

(D) 2sq.units

Comprehension IV

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}, \text{ if } U_1, U_2 \text{ and } U_3 \text{ are columns matrices satisfying.}$$

 $AU_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, AU_{2} = \begin{bmatrix} 2\\3\\0 \end{bmatrix}, AU_{3} = \begin{bmatrix} 2\\3\\1 \end{bmatrix} \text{ and } U \text{ is } 3 \times 3 \text{ matrix whose columns are } U_{1}, U_{2}, U_{3} \text{ then}$

answer the following questions

- 29. The value of |U| is
 - (A) 3
 - (B) –3
 - (C) 3/2
 - (D) 2
- 30. The sum of the elements of U^{-1} is
 - (A) –1
 - (B) 0
 - (C) 1
 - (D) 3

31. The value of
$$\begin{bmatrix} 3 & 2 & 0 \end{bmatrix} U \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$
 is

- (A) 5
- (B) 5/2
- (C)4
- (D) 3/2

Section – D

32. If roots of the equation $x^2 - 10cx - 11d = 0$ are *a*, *b* and those of $x^2 - 10ax - 11b = 0$ are *c*, *d*, then the value of a+b+c+d is (a,b,c) and *d* are distinct numbers)

33. The value of $5050 \frac{0}{\int_{0}^{1} (1-x^{50})^{100} dx}{\int_{0}^{1} (1-x^{50})^{101} dx}$ is

34. If $a_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \dots \left(-1\right)^{n-1} \left(\frac{3}{4}\right)^n$ and $b_n = 1 - a_n$ then find the minimum natural number n_0 such that $b_n > a_n \forall n > n_0$

35. If f(x) is a twice differentiable function such that

$$f(a) = 0, f(b) = 2, f(c) = -, f(d) = 2, f(e) = 0$$
, where $a < b < c < d < e$, then the minimum number of zeroes of $g(x) = (f'(x))^2 + f'(x)f(x)$ in the interval $[a, e]$ is

Section – E

36. Match the following:

Normals are drawn at points P, Q and R lying on the parabola $y_2 = 4x$ which intersect at (3, 0). Then

(i)	Area of ΔPQR	(A)	2	
(ii)	Radius of circumcircle of ΔPQR	(B)	5/2	
(iii)	Centroid of $\triangle PQR$	(C)	(5/2	2,0)
(iv)	Circumcentre of ΔPQR	(D)	(2/	3,0)
37. Match the following				
(i)	$\int_{0}^{\pi/2} (\sin x)^{\cos x} (\cos x \cot x - \log (\sin x)^{\sin x}) dx$	¢	(A)	1
(ii)	Area bounded by $-4y^2 = x$ and $x-1 = -5y^2$		(B)	0
(iii)	Cosine of the angle of intersection of curves $y = 3^{x-1} \log x$ and $y = x^x - 1$ is		(C)	6 ln 2
(iv)	Data could not be retrieved.		(D)	4/3

38. Match the following

- (i) Two rays in the first quadrant x + y = |a| and ax y = 1 (A) 2 intersects each other in the interval $a \in (a_0, \infty)$, the value of a_0 is
- (ii) Point (α, β, γ) lies on the plane x + y + z = 2. Let (B) 4/3 $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, \hat{k} \times (\hat{k} \times \vec{a}) = 0$, then $\gamma = .$
- (iii)) $\left| \int_{0}^{1} (1-y^{2}) dy \right| + \left| \int_{1}^{0} (y^{2}-1) dy \right|$
- (iv) If (D) $\sin A \sin B \sin C + \cos A \cos B = 1$, then the value of $\sin C =$
- 39. Match the following

(i)
$$\sum_{i=1}^{\infty} \tan^{-1} \left(\frac{1}{2i^2} \right) = t$$
, then $\tan t =$ (A) 0

- (ii) Sides a, b, c of a triangle ABC are in AP and (B) 1 $\cos \theta_1 = \frac{a}{b+c}, \cos \theta_2 = \frac{b}{a+c}, \cos \theta_3 = \frac{c}{a+b}, \tan^2\left(\frac{\theta_1}{2}\right) + \tan^2\left(\frac{\theta_3}{2}\right) =$
- (iii) A line is perpendicular to x+2y+2z=0 and passes through (0,1,0). (C) $\sqrt{5}$ The perpendicular distance of this line from the origin is 3
- (iv) Data could not be retrieved. (D) 2/3

(C) $\left| \int_{\Omega}^{1} \sqrt{1-x} dx \right| + \left| \int_{-1}^{0} \sqrt{1+x} dx \right|$

1