

# **IIT-JEE 2009**

# MATHS

# PART -1

[Time allowed: 3 hours] [Maximum Marks: 240]

## A. Question paper format:

1. The question paper consists of 3 parts (Chemistry, Mathematics and Physics). Each part consists of 4 sections.

- Section I contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which only one is correct.
- 3. Section II contains 4 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which one or more is/are correct.
- 4. Section III contains 2 groups of questions. Each group has 3 questions based on a paragraph. Each question has 4 choices (A), B), (C) and (D) for its answer, out of which only one is correct.
- 5. Section IV contains 2 questions. Each question has four statements (A, B, C and D) given in column I and five statements (p, q, r, s and t) in Column II. Any given statement in column I can have correct matching with one or more statements(s) given in column II. For example, if for a given question, statement B matches with the statements given in q and r, then for that particular question, against statement B, darken the bubbles corresponding to q and r in the ORS.



## **B.** Marking scheme

- For each question in Section I you will be awarded 3 marks if you darken the bubble corresponding to the correct answer and zero mark if no bubbles is darkened. In case of bubbling of incorrect answer, minus (-1) mark will be awarded.
- For each question in Section II, you will be awarded 4 marks if you darken the bubble (s) corresponding to the correct choice(s) for the answer, and zero mark if no bubble is darkened. In all other cases, Minus (-1) mark will be awarded.
- 8. For each question in **Section III**, you will be **awarded 4 marks** if you darken the bubble (s) corresponding to the correct answer, and **zero** mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
- 9. For each question in Section IV, you will be awarded 2 marks for each row in which you have darkened the bubble(s) corresponding to the correct answer. Thus, each question in this section carries a maximum of 8 marks. There is no negative marking for incorrect answer(s) for this section.



## **SECTION -1**

#### **Single Correct Choice Type**

This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C), and (D) for its answer, out of which ONLY ONE is correct.

21. Let z = x + iy be a complex number where x and y are integers. Then the area of the

rectangle whose vertices are the roots of the equation  $\overline{z}z^3 + z\overline{z}^3 = 350$  is

- (A) 48
- (B) 32
- (C) 40
- (D) 80

22. If  $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  are unit vectors such that  $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$  and  $\vec{a} \cdot \vec{c} = \frac{1}{2}$ , then

- (A)  $\vec{a}, \vec{b}, \vec{c}$  are non-coplanar
- (B)  $\vec{b}, \vec{c}, \vec{d}$  are non-coplanar
- (C)  $\vec{b}, \vec{d}$  are non-coplanar
- (D)  $\vec{a}, \vec{d}$  are non-coplanar  $\vec{b}, \vec{c}$  are parallel



23. The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse  $x^2 + 9y^2 = 9$  meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin O is

(A) 
$$\frac{31}{10}$$
  
(B)  $\frac{29}{10}$   
(C)  $\frac{21}{10}$   
(D)  $\frac{27}{10}$   
24. Let  $z = \cos\theta + i\sin\theta$ . Then the value of  $\sum_{m=1}^{15} \text{Im}(Z^{2m-1})$  at  $\theta = 2^{\circ}$  is  
(A)  $\frac{1}{\sin 2^{\circ}}$   
(B)  $\frac{1}{3\sin 2^{\circ}}$   
(C)  $\frac{1}{3\sin 2^{\circ}}$ 

(D) 
$$\frac{1}{4\sin 2^\circ}$$



25. Let P(3,2,6) be a point in space and Q be a point on the line

 $\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$  Then the value of  $\mu$  for which the vector  $\overrightarrow{PQ}$  is parallel to the plane x - 4y + 3z = 1 is

(A) 
$$\frac{1}{4}$$
  
(B)  $-\frac{1}{4}$ 

(C) 
$$\frac{1}{8}$$

(D)  $-\frac{1}{8}$ 

26. The number of seven digit integers, with sum of the digits equal to 10 and fonned by using the digits 1, 2 and 3 only, is

- (A) 55
- (B) 66
- (C) 77
- (D) 88



27. Let f be a non-negative function defined on die interval [0,1]. If

$$\int_{0}^{x} \sqrt{1 - (f'(t))^{2}} dt = \int_{0}^{x} f(t) dt, 0 \le x \le 1, \text{ and } f(0) = 0, \text{ then}$$
(A)  $f\left(\frac{1}{2}\right) < \frac{1}{2} \text{ and } f\left(\frac{1}{3}\right) > \frac{1}{3}$ 
(B)  $f\left(\frac{1}{2}\right) > \frac{1}{2} \text{ and } f\left(\frac{1}{3}\right) > \frac{1}{3}$ 
(C)  $f\left(\frac{1}{2}\right) < \frac{1}{2} \text{ and } f\left(\frac{1}{3}\right) < \frac{1}{3}$ 
(D)  $f\left(\frac{1}{2}\right) > \frac{1}{2} \text{ and } f\left(\frac{1}{3}\right) < \frac{1}{3}$ 

28. Tangents drawn from the point P(1,8) to the circle  $x^2 + y^2 - 6x - 4y - 11 = 0$  touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is

- (A)  $x^2 + y^2 + 4x 6y + 19 = 0$
- (B)  $x^2 + y^2 4x 10y + 19 = 0$
- (C)  $x^2 + y^2 2x + 6y 29 = 0$

(D) 
$$x^2 + y^2 - 6x - 4y + 19 = 0$$



#### **SECTION-II**

### **Multiple Correct Choice Type**

This section contains 4 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

29. In a triangle *ABC* with fixed base *BC*, the vertex *A* moves such that  $\cos B + \cos C = 4\sin^2 \frac{A}{2}$  If *a*, *b* and *c* denote the lengths of the sides of the triangle opposite to the angles *A*, *B* and *C*, respectively, then

- (A) b + c = 4a
- (B) b + c = 2a
- (C) locus of point *A* is an ellipse
- (D) locus of point A is a pair of straight lines

30. If 
$$\frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5}$$
, then  
(A)  $\tan^2 x = \frac{2}{3}$   
(B)  $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{1}{125}$   
(C)  $\tan^2 x = \frac{1}{3}$   
(D)  $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{2}{125}$ 



31. Let 
$$L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4}$$
,  $a > 0$  If  $L$  is finite, then  
(A)  $a = 2$   
(B)  $a = 1$   
(C)  $L = \frac{1}{64}$   
(D)  $L = \frac{1}{32}$   
32. Area of the region bounded by the curve  $y = e^x$  and lines  $x$   
(A)  $e - 1$   
(B)  $\int_{1}^{e} \ln(e + 1 - y) dy$   
(C)  $e - \int_{1}^{e} e^x dx$ 

(D)  $\int_{1}^{1} \ln y dy$ 

**SECTION-III** 

= 0 and y = e is

#### **Comprehension Type**

This section contains 2 groups of questions. Each group has 3 multiple choice questions based on a paragraph. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

## Paragraph for question Nos. 33 to 35

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required.



33. The probability that X = 3 equals

(A) 
$$\frac{25}{216}$$
  
(B)  $\frac{25}{36}$   
(C)  $\frac{5}{36}$   
(C)  $\frac{125}{36}$ 

(D) 
$$\frac{125}{216}$$

34. The probability that  $X \ge 3$  equals

| (A) $\frac{125}{216}$ |  |
|-----------------------|--|
| (B) $\frac{25}{36}$   |  |
| (C) $\frac{5}{36}$    |  |
| (D) $\frac{25}{216}$  |  |

35. The conditional probability that  $X \ge 6$  given X > 3 equals

(A) 
$$\frac{125}{216}$$
  
(B)  $\frac{25}{216}$   
(C)  $\frac{5}{36}$ 



## Paragraph for question Nos. 36 to 38

Let  $|\underline{A}|$  be the set of all  $3 \times 3$  symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.

36. The number of matrices in  $\underline{A}$  is

- (A) 12
- (B) 6
- (C) 9
- (D) 3

| 37. The number of matrices A in <u>A</u> for which the system of linear equations $A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ z \end{bmatrix}$ | 1 0                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| has a unique solution, is $\lfloor z \rfloor \lfloor$                                                                                                                 | IJ                                         |
| (A) less than 4                                                                                                                                                       |                                            |
| (B) at least 4 but less than 7                                                                                                                                        |                                            |
| (C) at least 7 but less than 10                                                                                                                                       |                                            |
| (D) at least 10                                                                                                                                                       |                                            |
| 38. The number of matrices A in <u>A</u> for which the system of linear equations $A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ z \end{bmatrix}$ | $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ is |
| inconsistent, is                                                                                                                                                      |                                            |
| (A) 0                                                                                                                                                                 |                                            |
| (B) more than 2                                                                                                                                                       |                                            |
| (C) 2                                                                                                                                                                 |                                            |

(D) 1