

JEE MAIN-2011

MATHEMATICS

- 41. Let P(6,3) be a point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ If the normal at the point *P* intersects the *x*-axis at (9.0) . then the eccentricity of the hyperbola is -
 - (A) $\sqrt{\frac{5}{2}}$ (B) $\sqrt{\frac{3}{2}}$ (C) $\sqrt{2}$
 - (D) $\sqrt{3}$
- 42. Let (x, y) be any point on the parabola $y^2 = 4x$. Let *P* be the point that divides the line segment from (0,0) to (x, y) in the ratio 1:3 Than the locus of *P* is-
 - (A) $x^2 = y$
 - (B) $y^2 = 2x$
 - (C) $y^2 = x$
 - (D) $x^2 = 2y$

- 43. Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in R$. Then the set of all x satisfying (f 0 g 0 g 0 f)(x) = (g 0 g 0 f)(x), where (f 0 g)(x) = f(g(x)), is-
 - (A) $\pm \sqrt{n\pi}, n \in \{0, 1, 2, ...\}$
 - (B) $\pm \sqrt{n\pi}, n \in \{1, 2, ...\}$
 - (C) $\frac{\pi}{2} + 2n\pi, n \in \{\dots, -2, -1, 0, 1, 2\dots\}$

(D)
$$2n\pi, n \in \{\dots, -2, -1, 0, 1, 2\dots\}$$

- 44. Let $f:[-1,2] \rightarrow [0,\infty]$ be a continuous function such that f(x) = f(1-x) for all $x \in [-1,2]$. Let $R_1 = \int_{-1}^{-1} xf(x) dx$, and R_2 be the area of the region bounded by y = f(x), x = -1, x = 2, and the *x*-axis. Then-
 - (A) $R_1 = 2R_2$
 - (B) $R_1 = 3R_2$
 - (C) $2R_1 = R_2$
 - (D) $3R_1 = R_2$

45. If
$$\lim_{x \to 0} \left[1 + x \ell n \left(1 + b^2 \right) \right]^{\frac{1}{x}} = 2b \sin^2 \theta, b > 0 \text{ and } \theta \in \left(-\pi, \pi \right), \text{ then the value of } \theta \text{ is-}$$

(A) $\pm \frac{\pi}{4}$

(B) $\pm \frac{\pi}{3}$

(C)
$$\pm \frac{\pi}{6}$$

(D)
$$\pm \frac{\pi}{2}$$

46. The circle passing through the point -1,0 and touching the *y*-axis at (0.2) also passes through the point -

(A) $\left(-\frac{3}{2},0\right)$ (B) $\left(-\frac{5}{2},0\right)$ (C) $\left(-\frac{3}{2},\frac{5}{2}\right)$ (D) $\left(-4,0\right)$

47. Let $\omega \neq 1$ be a cube root of unity and *S* be the set of all non-singular matrices of the form $\begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix}$, where each of *a*, *b* and *c* is either ω or ω^2 . Then the number of

distinct matrices in the set S is-

- (A) 2
- (B) 6
- (C) 4
- (D) 8

- 48. A value of b for which the equations
 - $x^2 + bx 1 = 0$ $x^2 + x + b = 0,$

have one root in common is -

- (A) $-\sqrt{2}$ (B) $-i\sqrt{3}$ (C) $i\sqrt{5}$
- (D) $\sqrt{2}$

49. If $f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0 \text{ then } -x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$

(A) f(x) is continuous at $x = \frac{\pi}{2}$

(B) f(x) is not differentiable at x = 0

(C) f(x) is differentiable at x = 1

(D)
$$f(x)$$
 is differentiable at $x = -\frac{3}{2}$

- 50. Let L be a normal to the parabola $y^2 = 4x$. If L passes through the point (9,6), then L is given by-
 - (A) y x + 3 = 0
 - (B) y + 3x 33 = 0
 - (C) y + x 15 = 0
 - (D) y 2x + 12 = 0
- 51. Let *E* and *F* be two independent events. The probability that exactly one of them occurs is $\frac{11}{25}$ and the probability of none of them occurring is $\frac{2}{25}$. If P(T) denotes the probability of occurrence of the event *T*, then -
 - (A) $P(E) = \frac{4}{5}, P(F) = \frac{3}{5}$
 - (B) $P(E) = \frac{1}{5}, P(F) = \frac{2}{5}$
 - (C) $P(E) = \frac{2}{5}, P(F) = \frac{1}{5}$
 - (D) $P(E) = \frac{3}{5}, P(F) = \frac{4}{5}$
- 52. Let $f:(0,1) \to R$ be defined by $f(x) = \frac{b-x}{1-bx}$, where *b* is a constant such that 0 < b < 1. Then
 - (A) f is not invertible on (0,1)

(B)
$$f \neq f^{-1}$$
 on (0,1) and $f'(b) = \frac{1}{f'(0)}$

(C)
$$f = f^{-1}$$
 on (0,1) and $f'(b) = \frac{1}{f'(0)}$

- (D) f^{-1} is differentiable on (0,1)
- 53. Let $y'(x) + y(x)g'(x) = g(x)g'(x), y(0) = 0, x \in R$. where f'(x) denotes $\frac{df(x)}{dx}$ and g(x) is a given non-constant differentia ale function on R with g(0) = g(2) = 0. Then the value of y(2) is
- 54. Let $\vec{a} = -\vec{i} \vec{k}$, $\vec{b} = -\vec{i} + \vec{j}$ and $\vec{c} = \vec{i} + 2\vec{j} + 3\vec{k}$ be three given vectors. If \vec{r} is a vector, such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is
- 55. Let $\omega = e^{i\pi/3}$, and a, b, c, x, y, z be non-zero complex numbers such that

$$a+b+c = x$$
$$a+b\omega + c\omega^{2} = y$$
$$a+b\omega^{2} + c\omega = z.$$

Then the value of $\frac{|x|^2 + |y|^2 + |z|^2}{|a|^2 + |b|^2 + |c|^2}$ is

56. Let *M* be 3×3 matrix satisfying

$$M\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}-1\\2\\3\end{bmatrix}, M\begin{bmatrix}1\\-1\\-1\end{bmatrix} = \begin{bmatrix}1\\1\\-1\end{bmatrix} \text{ and } M = \begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\0\\12\end{bmatrix}$$

Then the sum of the diagonal entries of M is

- 57. The number of distinct real roots of $x^4 4x^3 + 12x^2 + x 1 = 0$ is
- 58. The straight line 2x 3y = 1 divides the circular region $x^2 + y^2 \le 6$ into two parts. If $S = \left\{ \left(2, \frac{3}{4}\right), \left(\frac{5}{2}, \frac{3}{4}\right), \left(\frac{1}{4}, -\frac{1}{4}\right), \left(\frac{1}{8}, \frac{1}{4}\right) \right\}$, then die number of point(s) in *S* lying inside die smaller part is
- 59. Match the statements given in Column I with the values given in Column II

Column I

Column II

	Corumn
(A) If $\vec{a} = \hat{j} + \sqrt{3}\hat{k}$. $\vec{b} = -\hat{j} + \sqrt{3}\hat{k}$ and $\vec{c} = 2\sqrt{3}\hat{k}$ form	(p) $\frac{\pi}{-}$
a triangle, then the internal angle of the triangle	ч ⁷ б
between \vec{a} and \vec{b} is	
(B) If $\int_{a}^{b} (f(x) - 3x) dx = a^2 - b^2$, then the value of	(q) $\frac{2\pi}{3}$
$f\left(\frac{\pi}{6}\right)$ is	
(C) The value of $\frac{\pi^2}{\ell n 3} \int_{7/6}^{5/6} \sec(\pi x) dx$ is	(r) $\frac{\pi}{3}$
(D) The maximum value of $\left Arg\left(\frac{1}{1-z}\right) \right $ for	(s) <i>π</i>
$ z = 1, z \neq 1$ is given by	(t) $\frac{\pi}{2}$

TOMORROW'S GENIUS EMPOWER YOUR LEARNING CAMPUS

Column IColumn II(A) The set(p)
$$(-\infty, -1) \cup (1, \infty)$$
 $\left\{ \operatorname{Re}\left(\frac{2iz}{1-z^2}\right): z \text{ is a complex number}, |z| = 1, z \neq \pm 1 \right\}$ is(p) $(-\infty, -1) \cup (1, \infty)$ (B) The domain of the function $f(x) - \sin^{-1}\left(\frac{8(3)^{x-2}}{1-3^{2(x-1)}}\right)$ (q) $(-\infty, 0) \cup (0, \infty)$ is(C) If $f(\theta) = \begin{vmatrix} 1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{vmatrix}$, then the set(r) $[2, \infty)$ $\left\{ f(\theta): 0 \le \theta < \frac{\pi}{2} \right\}$ is(s) $(-\infty, -1] \cup [0, \infty)$ (D) If $f(x) = x^{3/2} (3x-10), x \ge 0$, then $f(x)$ is(t) $(-\infty, 0] \cup [2, \infty)$