

JEE MAIN - 2014

MATHEMATICS

1. If x = 1 and x = 2 are extreme points of $f(x) = a \log |x| + Bx^2 + x$ then :

a.
$$\infty = -6, \beta = -\frac{1}{2}$$

b. $\infty = -2, \beta = -\frac{1}{2}$
c. $\infty = -6, \beta = -\frac{1}{2}$
d. $\infty = -6, \beta = \frac{1}{2}$

2. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is:

a.
$$(x^2 - y^2)^2 = 6x^2 - 2y^2$$

b.
$$(x^2 + y^2)^2 = 6x^2 + 2y^2$$

c.
$$(x^2 + y^2)^2 = 6x^2 - 2y^2$$

d.
$$(x^2 - y^2)^2 = 6x^2 + 2y^2$$

- 3. Let $f_k(x) = \frac{1}{k} (\sin^k x + \cos^k x)$ where $x \in R$ and $k \ge 1$. Then $f_4(x) f_6(x)$ equals :
 - a. $\frac{1}{3}$ b. $\frac{1}{4}$ c. $\frac{1}{12}$ d. $\frac{1}{6}$
- 4. If $X = \{4^n 3n 1 : n \in N\}$ and $Y = \{9(n-1) : n \in N\}$, where N is the set of natural, then $X \cup Y$ is equal :
 - a. Y X
 - b. *X*
 - c. *Y*
 - d. *N*
- 5. If A is a 3×3 non-singular matrix such that AA' = A'A and $B = A^{-1}A'$, then BB' equals:
 - a. 1 b. B^{-1} c. $(B^{-1}y)$
 - d. 1+*B*

6. The integral
$$\int (1+x-\frac{1}{x})e^{x+\frac{1}{x}}dx$$
 is equal to :
e. $xe^{x+\frac{1}{x}}+c$
f. $(x+1)e^{x+\frac{1}{x}}+c$
g. $-xe^{x+\frac{1}{x}}+c$
h. $(x-1)e^{x+\frac{1}{x}}+c$

7. The area of the region described by $A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ is :

i. $\frac{\pi}{2} - \frac{4}{3}$	
$j. \ \frac{\pi}{2} - \frac{2}{3}$	
k. $\frac{\pi}{2} + \frac{2}{3}$	
1. $\frac{\pi}{2} + \frac{4}{3}$	

8. The image of the line $\frac{x-1}{3} = \frac{y-3}{1} = \frac{z-4}{-5}$ in the plane 2x - y + z + 3 = 0 is the line :

a.
$$\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z+2}{5}$$

b. $\frac{x-3}{3} = \frac{y+5}{1} = \frac{z-2}{-5}$
c. $\frac{x-3}{-3} = \frac{y+5}{-1} = \frac{z-2}{5}$
d. $\frac{x+3}{3} = \frac{y-5}{1} = \frac{z-2}{-5}$

9. The variance of first 50 even natural numbers is :

a. 833 b. 437 c. $\frac{437}{4}$ d. $\frac{833}{4}$

- 10. If z is a complex number such that $|z| \ge 2$, then the minimum value of $|z + \frac{1}{2}|$:
- 11. Three positive numbers form an increasing G.P. If the middle term in this G.P. is doubled, the new number is in A.P. Then the common ratio of the G.P > is :
- 12. If the coefficients of x^3 and x^4 in the expansion of $(1+ax+bx^2)(1-2x)^{18}$ in powers of x are both zero, then (a,b) is equal to :
- 13 Let a, b, and d be non-zero numbers. If the point of intersection of the lines 4ax+2ay+c=0 and 5bx+2by+d=0 lies in the fourth quadrant and is equidistant from the two axes then:
- 14. If $\left[\vec{a} \times \vec{b}\vec{b} \times \vec{c}\vec{c} \times \vec{a}\right] = \lambda \left[\vec{a}\vec{b}\vec{c}\right]^2$ then λ is equal to :
- 15. Let *A* and *B* be two events such that $P(\overline{A \cup B}) = \frac{1}{6}$, $P(A \cup B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{1}{6}$, where \overline{A} stands for the complement of the event *A*. Then the events *A* and *B* are :

16. Let *PS* be the median of the triangle with vertices P(2,2), Q(6,-1) and R(7,3), The equation of the line passing through (1,-1) and parallel to *PS* is :

17.
$$\lim_{x\to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$$
 is equal to :

- 18. Let \propto and β be the roots of equation $px^2 + qx + r = 0, p \neq 0$. If p, q, r are in *A.P.* and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha - \beta|$ is:
- 19. A bird is sitting on the top of a vertical pole 20m high and its elevation from a point O on the ground is 45°. It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30°. Then the speed (in m/s) of the bird is :
- 20. If $a \in R$ and the equation $-3(x-[x])^2 + 2(x+a^2 = 0)$ (where [x] denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval :

21. The integral
$$\int_0^{\pi} \sqrt{1 + 4\sin^2 \frac{x}{2} - 4\sin \frac{x}{2}} dx$$
 equals :

- 22. If f and g are differentiable functions in [0,1] satisfying f(0) = g(1), g(0) = 0, and f(1) = 6, then for some $C \in]0,1[$:
- 23. If g is the inverse of a function f and $f'(x) = \frac{1}{1+x^5}$, then g'(x0) is equal to :

24. If
$$(10)^9 + 2(11)^1(10)^8 + 3(11)^2(10)^7 + \dots + 10(11)^9 = k(10)9$$
, then k is equal to :

25. If
$$\infty, \beta \neq 0$$
, and $f(n0 = \infty^n + \beta^n)$ and

$$\begin{vmatrix} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{vmatrix} = K(1-\infty)^2(1-\beta)^2(\infty-\beta)^2$$
, then K is equal to

- 26. The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is
- 27. The statement $\sim (p \leftrightarrow \sim q)$ is :
- 28. Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{dp(t)}{dt} = \frac{1}{2}p(t) 200$ If P(0) = 100, than P(t) equals :
- 29. Let C be the circle with centre at (1,1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to :
- 30. The angle between the lines whose direction cosine satisfy the equations l+m+n=0and $l^2 = m^2 + n^2$ is :