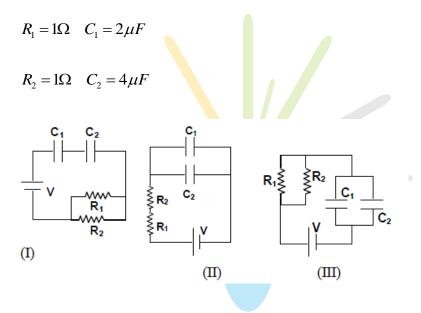


JEE MAIN-2006

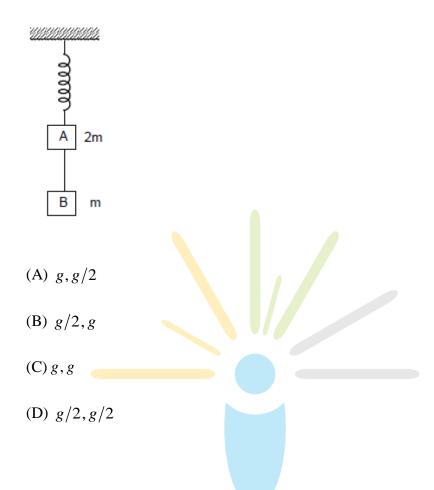

PHYSICS

[Time: 2 Hours]

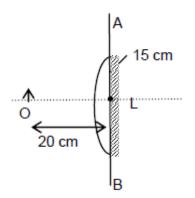
General Instructions:

Note: The marking Scheme is (+3, -1) for question numbers 1 to 12, (+5, -1) for question numbers 13 to 20, (+5, -2) for question numbers 21 to 32 and (+6, 0) for question numbers 33 to 40.

1. Given,

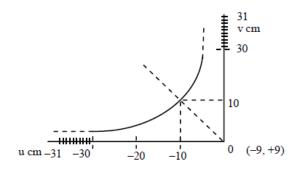


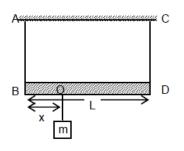
The time constants (in μS) for the circuits I, II, III are respectively


- (A) 18,8/9,4
- (B) 18, 4,8/9
- (C) 4,8/9,18
- (D) 8/9,18,4

2. Two blocks A and B of masses 2m and m, respectively, are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in the figure. The magnitudes of acceleration of A and B, immediately after the string is cut, are respectively

3. A point object is placed at a distance of 20 cm from a thin plano-convex lens of focal length 15 cm, if the plane surface is silvered. The image will form at




- (A) 60 cm left of AB
- (B) 30 cm left of AB
- (C) 12 cm left of AB
- (D) $60 \,\mathrm{cm}$ right of AB
- 4. A biconvex lens of focal length f forms a circular image of sun of radius r in focal plane. Then
 - (A) $\pi r^2 \propto f$
 - (B) $\pi r^2 \propto f^2$
 - (C) if lower half part is covered by black sheet, then area of the image is equal to $\pi r^2/2$
 - (D) if f is doubled, intensity will increase
- 5. Given a sample of Radium- 226 having half-life of 4 days. Find the probability, a nucleus disintegrates after 2 half lives.
 - (A) 1
 - (B) 1/2
 - (C) 1.5
 - (D) 3/4

6. Graph of position of image *vs* position of point object from a convex lens is shown. Then, focal length of the lens is

- (A) 0.50 ± 0.05 cm
- $(B) 0.50 \pm 0.10 cm$
- $(C) 5.00 \pm 0.05 cm$
- (D) 5.00±0.10cm
- 7. A massless rod is suspended by two identical strings *AB* and *CD* of equal length. A block of mass m is suspended from point *O* such that *BO* is equal to 'x'. Further, it is observed that the frequency of 1^{st} harmonic (fundamental frequency) in *AB* is equal to 2^{nd} harmonic frequency in *CD*. Then, length of *BO* is

- (A) *L*/5
- (B) 4L/5
- (C) 3L/4
- (D) L/4

8. A system of binary stars of masses m_A and m_B are moving in circular orbits of radii r_A and r_B respectively. If T_A and T_B are the time periods of masses m_A and m_B respectively, then

(A)
$$\frac{T_A}{T_B} = \left(\frac{r_A}{r_B}\right)^{3/2}$$

(B)
$$T_A > T_B (\text{If } r_A > r_B)$$

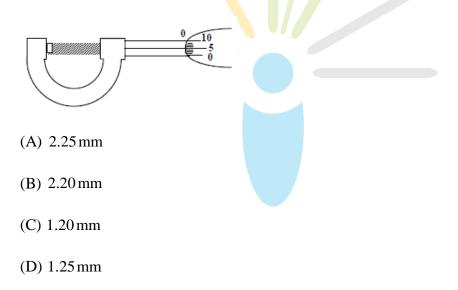
(C)
$$T_A > T_B \left(\text{If } m_A > m_B \right)$$

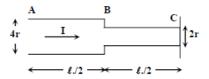
$$(\mathbf{D}) T_A = T_B \quad [+3, -1]$$

9. A solid sphere of mass M, radius R and having moment of inertia about an axis passing through the centre of mass as I, is recast into a disc of thickness t, whose moment of inertia about an axis passing through its edge and perpendicular to its plane remains I. Then, radius of the disc will be

(A)
$$\frac{2R}{\sqrt{15}}$$

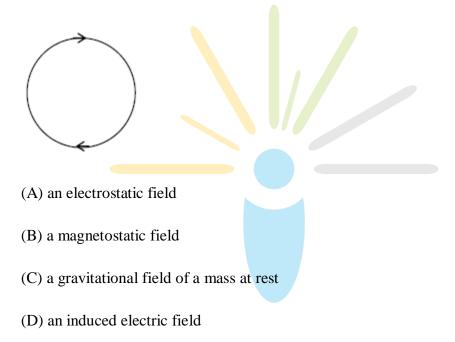
(B) $R\sqrt{\frac{2}{15}}$
(C) $\frac{4R}{\sqrt{15}}$


(D) $\frac{R}{4}$ [+3,-1]


10. A student performs an experiment for determination of $g\left(=\frac{4\pi^2 \ell}{T^2}\right), \ell \approx 1m$, and he commits an error of $\Delta \ell$.

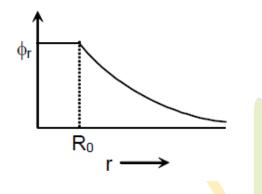
For T he takes the time of n oscillations with the stop watch of least count ΔT and he commits a human error of 0.1sec. For which of the following data, the measurement of g will be most accurate?

- $\Delta \ell \quad \Delta T \quad n$ Amplitude of oscillation
- (A) 5mm 0.2 sec 10 5mm
- (B) 5mm $0.2 \sec 20 5$ mm
- (C) 5mm 0.1sec 20 1mm
- (D) 1mm 0.1sec 50 1mm
- 11. The circular divisions of shown screw gauge are 50. It moves 0.5 mm on main scale in one rotation. The diameter of the ball is


12. Consider a cylindrical element as shown in the figure. Current flowing the through element is I and resistivity of material of the cylinder is ρ .

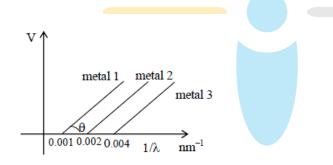
Choose the correct option out the following.

- (A) Power loss in first half is four times the power loss in second half.
- (B) Voltage drop in first half is twice of voltage drop in second half.
- (C) Current density in both halves are equal.
- (D) Electric field in both halves is equal.
- 13. In the given diagram, a line of force of a particular force field is shown. Out of the following options, it can never represent

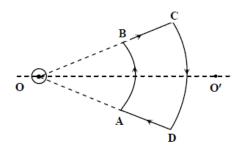

14. The electrostatic potential (ϕ_r) of a spherical symmetric system, kept at origin, is shown in the adjacent figure, and given as

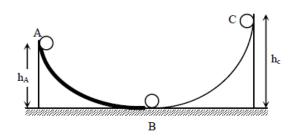
$$\phi_r = \frac{q}{4\pi \in_0 r_0} \quad (r \ge R_0)$$
$$\phi_r = \frac{q}{4\pi \in_0 R_0} \quad (r \le R_0)$$

Which of the following option(s) is/are correct?


- (A) For spherical region $r \leq R_0$, total electrostatic energy stored is zero.
- (B) Within $r = 2R_0$, total charge is q.
- (C) There will be no charge anywhere except at $r = R_0$.
- (D) Electric field is discontinuous at $r = R_0$.

- 15. A solid cylinder of mass m and radius r is rolling on a rough inclined plane of inclination θ . The coefficient of friction between the cylinder and incline is μ . Then
 - (A) frictional force is always $\mu mg \cos \theta$
 - (B) friction is a dissipative force
 - (C) by decreasing θ , frictional force decreases
 - (D) friction opposes translation and supports rotation.
- 16. Function $x = A \sin^2 \omega t + B \cos^2 \omega t + C \sin \omega t \cos \omega t$ represents SHM
 - (A) for any value of A, B and C (except C = 0)
 - (B) if A = -B; C = 2B, amplitude $= |B\sqrt{2}|$
 - (C) if A = B; C = 0
 - (D) if A = B; C = 2B, amplitude = |B|


- 17. In a dark room with ambient temperature T_0 , a black body is kept at a temperature T. Keeping the temperature of the black body constant (at T), sunrays are allowed to fall on the black body through a hole in the roof of the dark room. Assuming that there is no change in the ambient temperature of the room, which of the following statement(s) is/are correct?
 - (A) The quantity of radiation absorbed by the black body in unit time will increase.
 - (B) Since emissivity = absorptivity, hence the quantity of radiation emitted by black body in unit time will increase.
 - (C) Black body radiates more energy in unit time in the visible spectrum.
 - (D) The reflected energy in unit time by the black body remains same.
- 18. The graph between $1/\lambda$ and stopping potential (V) of three metals having work functions ϕ_1, ϕ_2 and ϕ_3 in an experiment of photo-electric effect is plotted as shown in the figure. Which of the following statement(s) is/are correct? [Here λ is the wavelength of the incident ray].


- (A) Ratio of work functions $4 \phi_1 : \phi_2 : \phi_3 = 1:2:4$
- (B) Ratio of work functions $\phi_1: \phi_2: \phi_3 = 4:2:1$
- (C) tan θ is directly proportional to hc/e, where h is Planck's constant and c is the speed of light.
- (D) The violet colour light can eject photoelectrons from metals 2 and 3.

19. An infinite current carrying wire passes through point *O* and in perpendicular to the plane containing a current carrying loop *ABCD* as shown in the figure. Choose the correct option (s).

- (A) Net force on the loop is zero.
- (B) Net torque on the loop is zero.
- (C) As seen from O, the loop rotates clockwise.
- (D) As seen from O, the loop rotates anticlockwise
- 20. A ball moves over a fixed track as shown in the figure. From A to B the ball rolls without slipping. Surface BC is frictionless. KA, KB and KC are kinetic energies of the ball at A, B and C, respectively. Then

- (A) $h_A > h_C$; $\mathbf{K}_B > K_C$
- (B) $h_A > h_C; K_C > K_A$
- (C) $h_A = h_C$; $\mathbf{K}_B = K_C$
- (D) $h_A < h_C; K_B > K_C$

- 21. Initially, the capacitor was uncharged. Now, switch S_1 is closed and S_2 is kept open. If time constant of this circuit is τ , then
 - (A) after time interval τ , charge on the capacitor is CV/2
 - (B) after time interval 2τ , charge on the capacitor is $CV(1-e^{-2})$
 - (C) the work done by the voltage source will be half of the heat dissipated when the capacitor is fully charged.
 - (D) after time interval 2τ , charge on the capacitor is $CV(1-e^{-1})$
- 22. After the capacitor gets fully charged, S_1 is opened and S_2 is closed so that the inductor is connected in series with the capacitor. Then,
 - (A) at t = 0, energy stored in the circuit is purely in the form of magnetic energy
 - (B) at any time t > 0, current in the circuit is in the same direction
 - (C) at t > 0, there is no exchange of energy between the inductor and capacitor

(D) at any time t > 0, instantaneous current in the circuit may $V \sqrt{\frac{C}{L}}$

23. If the total charge stored in the *LC* circuit is Q_0 , then for $t \ge 0$

(A) the charge on the capacitor is $Q = Q_0 \cos\left(\frac{\pi}{2} + \frac{t}{\sqrt{LC}}\right)$

(B) the charge on the capacitor is $Q = Q_0 \cos\left(\frac{\pi}{2} - \frac{t}{\sqrt{LC}}\right)$

(C) the charge on the capacitor is $Q = -LC \frac{d^2Q}{dt^2}$

(D) the charge on the capacitor is $Q = -\frac{1}{\sqrt{LC}} \frac{d^2Q}{dt^2}$

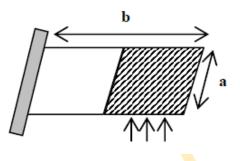
- 24. If level of liquid starts decreasing slowly when the level of liquid is at a height h_1 above the cylinder, the block just starts moving up. Then, value of h_1 is
 - (A) 2h/3
 - (B) 5h/4
 - (C) 5h/3
 - (D) 5h/2
- 25. Let the cylinder is prevented from moving up, by applying a force and water level is further decreased. Then, height of water level (h_2 in figure) for which the cylinder remains in original position without application of force is
 - (A) h/3
 (B) 4h/9
 (C) 2h/3
 (D) h
- 26. If height h2 of water level is further decreased, then
 - (A) cylinder will not move up and remains at its original position.
 - (B) for $h_2 = h/3$, cylinder again starts moving up
 - (C) for $h_2 = h/4$, cylinder again starts moving up
 - (D) for $h_2 = h/5$ cylinder again starts moving up

- 27. Two waves $y_1 = A\cos(0.5\pi x 100\pi t)$ and $y_2 = A\cos(0.46\pi x 92\pi t)$ are travelling in a pipe placed along *x*-axis. Find the number of times intensity is maximum in time interval of 1 sec.
 - (A) 4
 - (B) 6
 - (C) 8
 - (D) 10

28. Find wave velocity of louder sound

- (A) 100 m/s
- (B) 192 m/s
- (C) 200 m/s
- (D) 96 m/s

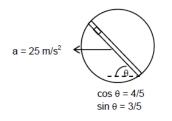
29. Find the number of times $y_1 + y_2 = 0$ at x = 0 in 1 sec


- (A) 100
- (B) 46
- (C) 192
- (D) 96

Questions 30-32 could not be retrieved due to large length of comprehension.

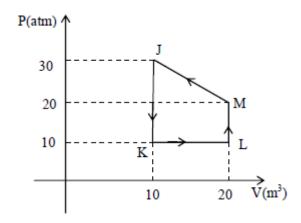
33. There is a rectangular plate of mass M kg of dimensions $(a \times b)$. The plate is held in horizontal position by striking *n* small balls each of mass *m* per unit area per unit time. These are striking in the shaded half region of the plate. The balls are colliding elastically with velocity *v*. What is *v*?

It is given n = 100, M = 3kg, m = 0.01kg; b = 2m; a = 1m; g = 10 m/S².



34. In an insulated vessel, 0.05kg steam at 373K and 0.45kg of ice at 253K are mixed. Then, find the final temperature of the mixture.

Given,
$$L_{\text{fusion}} = 80 \, cal/g = 336 \, J/g$$
, $L_{\text{vaporization}} = 540 \, cal/g = 2268 \, J/g$


$$S_{\text{ice}} = 2100 J/\text{kg} K = 0.5 cal/gK \text{ and } S_{\text{water}} = 4200 J/\text{kg} K = 1 cal/gK$$

- 35. In hydrogen-like atom (z=11), n^{th} line of Lyman series has wavelength λ equal to the de-Broglie's wavelength of electron in the level from which it originated. What is the value of n?
- 36. A circular disc with a groove along its diameter is placed horizontally. A block of mass 1kg is placed as shown. The co-efficient of friction between the block and all surfaces of groove in contact is $\mu = 2/5$. The disc has an acceleration of 25 m/s^2 . Find the acceleration of the block with respect to disc.

Heat given to process is positive, match the following option of column I with the 37. corresponding option of column II

Column I	Column II
(A) JK	(P) $\Delta W > 0$
(B) KL	(Q) $\Delta Q < 0$
(C) LM	(R) $\Delta W < 0$
(D) MJ	(S) $\Delta Q > 0$
Match the following Columns	

Match the following Columns 38.

Column I	Column II
(A) Nuclear fusion	(P) Converts some matter into energy
(B) Nuclear fission	(Q) Generally possible for nuclei with low atomic number
(C) β-decay	(R) Generally possible for nuclei with higher atomic number
(D) Exothermic nuclear reaction	(S) Essentially proceeds by weak nuclear forces


Match the following Columns 39.

Column I	Column II
(A) Dielectric ring uniformly charged	(P) Time independent electrostatic field out of system
(B) Dielectric ring uniformly charged rotating with angular velocity ω	(Q) Magnetic field
(C) Constant current in ring i_0	(R) Induced electric field
(D) $\mathbf{i} = \mathbf{i}_0 \cos \omega \mathbf{t}$	(S) Magnetic moment

40. A simple telescope used to view distant objects has eyepiece and objective lens of focal lengths f_e and f_0 , respectively. Then

Column I	Column II
(A) Intensity of light received by lens	(P) Radius of aperture (R)
(B) Angular magnification	(Q) Dispersion of lens
(C) Length of telescope	(R) focal length f ₀ , f _e
(D) Sharpness of image	(S) spherical aberration

