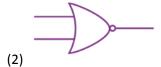
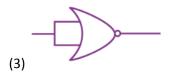
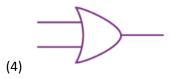


JEE MAIN - 2020


PHYSICS


SECTION A


This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

- 1. Polarizer-analyzer set is adjusted such that the intensity of light coming out of the analyzer is just $10\,\%$ of the original intensity. Assuming that the polarizer-analyzer set does not absorb any light, the angle by which the analyzer needs to be rotated further to reduce the output intensity to be zero is
- $(1) 45^{\circ}$
- (2) 90°
- (3) 71.6°
- (4) 18.4°
- 2. Which of the following gives reversible operation?

- **3.** A 60~HP electric motor lifts an elevator with a maximum total load capacity of 2000~kg . If the frictional force on the elevator is 4000~N, the speed of the elevator at full load is close to (Given $1~HP=746~W,~g=10~m/s^2$)
- (1) 1.5 m/s
- (2) 1.7 m/s
- (3) 2 m/s
- (4) 1.9 m/s
- **4.** A long solenoid of radius R carries a time t dependent current t and t dependent current t dependent t dependent current t dependent t dependent
- (1) Direction of I_R remains unchanged, and V_R is maximum at $t=0.5~\mathrm{s}$
- (2) Direction of I_R remains unchanged, and V_R is zero at $t=0.25~\mathrm{s}$
- (3) At $t=0.5~{
 m s}$ direction of $I_{\scriptscriptstyle R}$ reverses and $V_{\scriptscriptstyle R}$ is zero
- (4) At $t=0.25~{
 m s}$ direction of $I_{\scriptscriptstyle R}$ reverses and $V_{\scriptscriptstyle R}$ is maximum
- **5.** Two moles of an ideal gas with $\frac{C_P}{C_V} = \frac{5}{3}$ are mixed with 3 moles of another ideal gas with

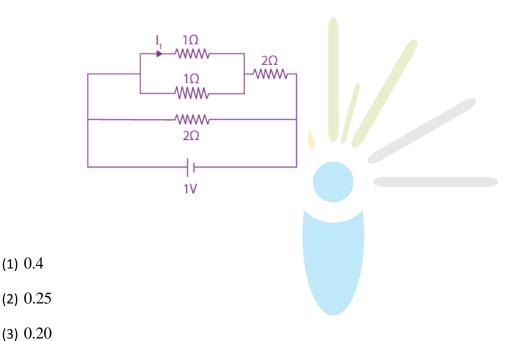
$$\frac{C_P}{C_V} = \frac{4}{3}$$
 . The value of $\frac{C_P}{C_V}$ for the mixture is

- (1) 1.47
- (2) 1.4
- (3) 1.42
- (4) 1.50

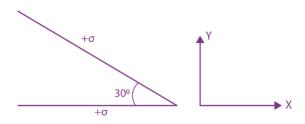
6. Consider a circular coil of wire carrying current I, forming a magnetic dipole. The magnetic flux through an infinite plane that contains the circular coil and excluding the circular coil area is given by $arphi_i$. The magnetic flux through the area of the circular coil area is given by $arphi_0$. Which of the following option is correct?

(1)
$$\varphi_i = -\varphi_0$$

(2)
$$\varphi_i > \varphi_0$$


(3)
$$\varphi_i < \varphi_0$$

(4)
$$\varphi_i = \varphi_0$$


(1) 0.4

(4) 0.5

7. The current (in A) flowing through 1Ω resistor in the following circuit is

8. Two infinite planes each with uniform surface charge density $+\sigma$ C/m² are kept in such a way that the angle between them is 30° . The electric field in the region shown between them is given by:

(1)
$$\frac{\sigma}{2\varepsilon_0} \left[\left(1 - \frac{\sqrt{3}}{2} \right) \hat{y} - \frac{1}{2} \hat{x} \right]$$

(2)
$$\frac{\sigma}{2\varepsilon_0} \left[\left(1 + \frac{\sqrt{3}}{2} \right) \hat{y} - \frac{1}{2} \hat{x} \right]$$

(3)
$$\frac{\sigma}{2\varepsilon_0} \left[\left(1 - \frac{\sqrt{3}}{2} \right) \hat{y} + \frac{1}{2} \hat{x} \right]$$

(4)
$$\frac{\sigma}{2\varepsilon_0} \left[\left(1 + \frac{\sqrt{3}}{2} \right) \hat{y} + \frac{1}{2} \hat{x} \right]$$

9. If the magnetic field in a plane electromagnetic wave is given by $B = 3 \times 10^{-8} \sin \left(1.6 \times 10^3 \, x + 48 \times 10^{10} \, t \right) \, \hat{j} \, \, \text{T then what will be expression for electric field?}$

(1)
$$E = 3 \times 10^{-8} \sin(1.6 \times 10^3 x + 48 \times 10^{10} t) \hat{i} \text{ V/m}$$

(2)
$$E = 3 \times 10^{-8} \sin(1.6 \times 10^3 x + 48 \times 10^{10} t) \hat{j} \text{ V/m}$$

(3)
$$E = 60 \sin(1.6 \times 10^3 x + 48 \times 10^{10} t) \hat{k} \text{ V/m}$$

(4)
$$E = 9\sin(1.6 \times 10^3 x + 48 \times 10^{10} t) \hat{k} \text{ V/m}$$

10. The time period of revolution of electron in its ground state orbit in a hydrogen atom is 1.6×10^{-16} s . The frequency of revolution of the electron in its first excited state (in s⁻¹) is

(1)
$$6.2 \times 10^{15}$$

(2)
$$7.8 \times 10^{14}$$

(3)
$$1.6 \times 10^{14}$$

(4)
$$5.6 \times 10^{12}$$

11. A LCR circuit behaves like a damped harmonic oscillator. Comparing it with a physical spring-mass damped oscillator having damping constant' b', the correct equivalence will be

(1)
$$L \rightarrow \frac{1}{h}, C \rightarrow \frac{1}{m}, R \rightarrow \frac{1}{k}$$

(2)
$$L \rightarrow k, C \rightarrow b, R \rightarrow m$$

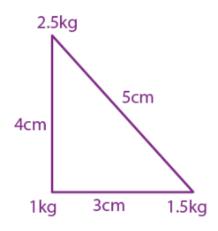
(3)
$$L \rightarrow m, C \rightarrow k, R \rightarrow b$$

(4)
$$L \rightarrow m, C \rightarrow \frac{1}{k}, R \rightarrow b$$

- **12.** Visible light of wavelength 6000×10^{-8} cm falls normally on a single slit and produces a diffraction pattern. It is found that the second diffraction minima is at 60° from the central maxima. If the first minimum is produced at θ_1 , then θ_1 is close to,
- (1) 20°
- (2) 45°
- (3) 30°
- (4) 25°
- **13.** The radius of gyration of a uniform rod of length l about an axis passing through a point $\frac{l}{4}$ away from the center of the rod, and perpendicular to it, is
- (1) $l\sqrt{\frac{7}{48}}$
- (2) $l\sqrt{\frac{3}{8}}$
- (3) $\frac{l}{4}$
- (4) $\frac{l}{8}$

14. A satellite of mass m is launched vertically upward with an initial speed u from the surface of the earth. After it reaches height R (R = radius of earth), it ejects a rocket of mass $\frac{m}{10}$ so that subsequently the satellite moves in a circular orbit. The kinetic energy of the

rocket is (G = gravitational constant; M is the mass of earth)


(1)
$$5m \left[u^2 - \frac{119GM}{200R} \right]$$

$$(2) \ \frac{m}{20} \left[u - \sqrt{\frac{2GM}{3R}} \right]^2$$

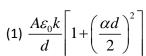
$$(3) \ \frac{m}{20} \left[u + \sqrt{\frac{5GM}{6R}} \right]^2$$

(4)
$$\frac{m}{20} \left[u^2 + \frac{113GM}{200R} \right]$$

15. Three-point particles of mass 1 kg, 1.5 kg and 2.5 kg are placed at three corners of a right triangle of sides 4 cm, 3 cm and 5 cm as shown in the figure. The centre of mass of the system is at the point:

- (1) 0.9 cm right and 2 cm above 1 kg mass
- (2) $2\ cm$ right and $0.9\ cm$ above $1\ kg$ mass
- (3) $0.9 \ cm$ right and $1.2 \ cm$ above $1 \ kg$ mass
- (4) $0.6\ cm$ right and $2\ cm$ above $1\ kg$ mass

- **16.** If we need a magnification of 375 from a compound microscope of tube length 150 mm and an objective of focal length 5 mm, the focal length of the eye-piece should be close to:
- (1) 22 mm
- (2) 12 mm
- (3) 2 mm
- (4) 33 mm
- **17.** Speed of transverse wave on a straight wire (mass 6~g, length 60~cm and area of cross-section $1~mm^2$) is 90~m/s. If the Young's modulus of wire is $16\times10^{11}~N/m^2$, the extension of wire over its natural length is
- (1) 0.03 mm
- (2) 0.04 mm
- (3) 0.02 mm
- (4) 0.01 mm
- **18.** 1 liter of dry air at STP expands adiabatically to a volume of 3 liters . If $\gamma = 1.4$, the work done by air is ($3^{1.4} = 4.6555$) (take air to be an ideal gas)
- (1) 48 J
- (2) 100.8 J
- (3) 90.5 J
- (4) 60.7 J
- **19.** A bob of mass m is tied by a massless string whose other end portion is wound on a fly wheel (disc) of radius r and mass m. When released from the rest, the bob starts falling vertically. When it has covered a distance h, the angular speed of the wheel will be:
- $(1) \ r\sqrt{\frac{3}{4gh}}$
- (2) $\frac{1}{r} \sqrt{\frac{4gh}{3}}$



$$(3) \ \frac{r\sqrt{3}}{2gh}$$

$$(4) \frac{1}{r} \sqrt{\frac{2gh}{3}}$$

20. A parallel plate capacitor has plates of area A separated by distance 'd' between them. It is filled with a dielectric which has a dielectric constant varies as $k(x) = k(1 + \alpha x)$, where 'x' is the distance measured from one of the plates. If $(\alpha d << 1)$, the total capacitance of the system is best given by the expression:

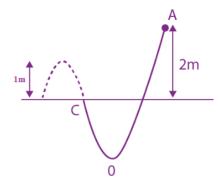
(2)
$$\frac{A\varepsilon_0 k}{d} \left[1 + \left(\frac{\alpha d}{2} \right) \right]$$

$$(3) \ \frac{A\varepsilon_0 k}{d} \left[1 + \left(\frac{\alpha^2 d}{2} \right) \right]$$

$$(4) \ \frac{A\varepsilon_0 k}{d} [1 + \alpha d]$$

SECTION B

This section contains 5 Numerical Value Questions


21. A non- isotropic solid metal cube has coefficient of linear expansion as 5×10^{-5} /°C along the x- axis and 5×10^{-5} /°C along y-axis and z-axis. If the coefficient of volumetric expansion of the solid is $C \times 10^{-6}$ /°C then the value of C is........

22. A loop ABCDEFA of straight edges has six corner points A(0,0,0), B(5,0,0), C(5,5,0), D(0,5,0), E(0,5,5), F(0,0,5). The magnetic field in this region is $B = (3\hat{i} + 4\hat{k})T$. The quantity of flux through the loop ABCDEFA (in Wb) is -------

23. A Carnot engine operates between two reservoirs of temperature $900~\rm K$ and $300~\rm K$. The engine performs $1200~\rm J$ of work per cycle. The heat energy (in $\rm J$) delivered by the engine to the low temperature reservoir, in a cycle, is.....

24. A particle of mass 1 kg slides down a frictionless track (AOC) starting from rest at a point A (height $2 \, \mathrm{m}$). After reaching C, the particle continues to move freely in air as a projectile. When it reaches its highest point P (height $1 \, \mathrm{m}$) the kinetic energy of the particle (in J) is:

(Figure drawn is schematic and not to scale; take $g = 10 \text{ m/s}^2$)

25. A beam of electromagnetic radiation of intensity $6.4\times10^{-5}\,\mathrm{W/cm^2}$ is comprised of wavelength, $\lambda=310~\mathrm{nm}$. It falls normally on a metal ($\phi=2~\mathrm{eV}$) of surface area 1cm2. If one in $103~\mathrm{photons}$ ejects an electron, total number of electrons ejected in $1~\mathrm{s}$ is $10x~\mathrm{(}hc=1024~\mathrm{eV.nm}$, $1\mathrm{eV}=1.6\times10^{-19}\,\mathrm{J}$), then x is.......